

Environmental Site Assessment: Detailed Site Investigation for

538 Karangahape Road, Newton

Rev A

29 August 2023

Job No. 220086

Auckland (09) 835 1740

Northland (09) 982 8053 **Wellington** (04) 896 0675

Christchurch (03) 352 4519

www.soilandrock.co.nz

ENVIRONMENTAL SITE ASSESSMENT: DETAILED SITE INVESTIGATION FOR 538 KARANGAHAPE ROAD, NEWTON

Job Number:	220086
Name of Project:	538 Karangahape Road, Newton
Client:	James Kirkpatrick Group Limited
Author:	Garry Cepe, Environmental Engineer/Contaminated Land Consultant, BE Civil
Reviewer:	Aaron Thorburn, Senior Environmental Advisor, BAppSci
Authoriser:	Jordan Vaughn, Technical Director – Contaminated Land, MSc Geology, CEnvP
Document Version:	A
Printed:	29 August 2023
Author Signature:	
Reviewer Signature:	
Authoriser Signature:	

COPYRIGHT:

The information presented in this document is the property of Soil & Rock Consultants. Use or copying of this document in whole or in part without the previous permission of Soil & Rock Consultants imply a breach of copyright.

Environmental

Executive Summary

Soil & Rock Consultants completed a field investigation and prepared a Detailed Site Investigation for the proposed redevelopment at 538 Karangahape Road, Newton.

Soil samples were collected from across the site and analysed for Contaminants of Concern. Laboratory analytical results reported:

- All Contaminants of Concern concentrations complied with Ministry for the Environment National Environmental Standards and/or Petroleum Hydrocarbon Guidelines Human Health criteria;
- Heavy Metals concentrations in three soil samples exceeded Auckland Unitary Plan Environmental Discharge criteria;
- Asbestos was detected in two soil samples, but at concentrations below Asbestos Human Health Soil Guideline Values; and
- Heavy Metals concentrations were above Background Levels or Total Petroleum Hydrocarbons and Polycyclic Aromatic Hydrocarbons concentrations were above laboratory Method Detection Limits in most soil samples.

Based on these findings:

- A Site Management Plan / Remediation Action Plan has been prepared for the site;
- Soil/fill material with Contaminants of Concern concentrations above applicable Environmental Discharge criteria should be remediated (excavated and disposed of off-site or otherwise isolated);
- Any fill material/soil with Heavy Metals concentrations above Background Levels or Total Petroleum Hydrocarbons or Polycyclic Aromatic Hydrocarbons concentrations above laboratory Method Detection Limits is not considered 'Cleanfill' for disposal purposes and must be disposed of at a facility licensed to accept such materials; and
- Any visual/olfactory evidence of contamination discovered during site works must be segregated and analysed prior to disposal.

Our findings, conclusion and recommendations are detailed in the following report and appendices.

Table of Contents

Executi	ve Summary	i
1.0	Introduction	. 1
1.1	Limitations	1
1.2	Site Description	2
1.3	Proposed Redevelopment	2
1.4	Project Scope	2
2.0	Geology, Surface Water and Groundwater	. 3
3.0	Previous Environmental Investigations	. 4
4.0	Soil Contamination Investigation	. 6
4.1	Identified Contaminants of Concern	6
4.2	Soil Investigation	6
4.3	Soil Sampling Protocol	7
5.0	Regulations	.7
5.1	National Environmental Standard – Contaminants in Soil	7
5.2	Auckland Unitary Plan	8
5.3	New Zealand Guidelines for Assessing and Managing Asbestos in Soil	8
6.0	Assessment Criteria	. 8
7.0	Analytical Results	. 9
8.0	Discussion	13
8.1	Conceptual Site Model	13
8.2	Regulatory Implications	14
9.0	Conclusion	15
10.0	Recommendations	15

Appendices:

Appendix A:	Site Plan
Appendix B:	Machine Bore Logs (S&RC Geotechnical Investigation, 2023) – MB04, MB05 & MB06
Appendix C:	Laboratory Analytical Results and Chain of Custody Documentation

1.0 Introduction

Soil & Rock Consultants (S&RC) were engaged by James Kirkpatrick Group Limited to carry out a Detailed Site Investigation (DSI) in association with the proposed redevelopment at 538 Karangahape Road, Newton, the 'site' shown in Figure 1 below and in S&RC Drawing 220086/1 provided in Appendix A.

Figure 1: Site Location (Source: Auckland Council GeoMaps Website)

This report comprises a DSI prepared in accordance with Ministry for the Environment's (MfE) guidelines for contaminated site investigations, National Environmental Standard (NES) for contaminated sites and Auckland Council requirements. This investigation and reporting have been prepared, reviewed and authorised by Suitably Qualified and Experienced Practitioners (SQEP), as required under the NES.

1.1 Limitations

This report has been prepared by Soil & Rock Consultants for the sole benefit of James Kirkpatrick Group Limited (the client), with respect to the proposed redevelopment at 538 Karangahape Road, Newton and the brief given to us. This report may be used by Auckland Council or their appointed Consultants, if required, and may be relied upon when considering a Resource Consent application in association with the proposed redevelopment.

The data and/or opinions contained in this report may not be used in other contexts or for any other purpose or by any other party without our prior review and agreement. This report may only be read or transmitted in its entirety, including the appendices.

1.2 Site Description

The subject site is legally described as Lot 1 DP 570848, covering an area of 1,597m². Under the Auckland Unitary Plan (AUP), the site is zoned 'Business – City Centre Zone'.

Built development onsite previously comprises a three-storey commercial building. At the time of this report, only the basement slab (66.13mRL) and retaining walls remained. Current retained heights extend to a maximum of approximately 5.0m in the northwestern corner of the basement (see Figure 1). The remainder of the site is covered in gravel or asphalt.

1.3 Proposed Redevelopment

Drawings prepared by Fearon Hay Architects show the proposed redevelopment will comprise construction of a ten-level building, with two basement levels below as shown in Figure 2. Cuts to a maximum depth of 7.5m are required to form the basement levels. Minimal filling is expected to be required.

Figure 2: Proposed Development (Source: Basement 2 Reference Plan by Feron Hay Architects)

1.4 Project Scope

This investigation comprises a DSI, including the following:

- Review from S&RC's previous environmental investigation (Ref. 220086, Soil Benchmarking Report 538 Karangahape Road, Auckland City, 18 March 2022);
- Collection and laboratory analyses of soil samples for identified Contaminants of Concern (CoC);
- Interpretation of laboratory analytical results; and
- DSI reporting (this report).

2.0 Geology, Surface Water and Groundwater

According to the GNS Science New Zealand Geology Web Map, 1:250,000 Scale, the site is underlain by the East Coast Bays Formation sediments of the Waitemata Group (Non-Volcanic Soils).

A geologic map of the site and surrounding area is provided in Figure 2 below.

Figure 3: Geological Map (Source: GNS WebMaps Website)

During S&RC's geotechnical investigation completed concurrently with this investigation, fill material was encountered beneath the site (underneath concrete/asphalt pavement) to depths between 0.3m below ground level (blg) and 5.9m bgl, underlain by Weathered Waitemata Group Soils and Waitemata Group Rock to the termination depths of the borehole (maximum termination depth of 19.7m bgl) (Ref. 20111, *Geotechnical Investigation for Multi-Level Commercial Building at 538 Karangahape Road, Newton*, 22 August 2023). Bore logs are attached in Appendix B.

An overview of the Auckland Council Geomaps did not identify any surface water receptor within 500m radius of the site. The nearest surface water to the site is Waitemata Harbour, located approximately 1.7km to the north of the site.

The site surface and surrounding area slopes gently to the south and southeast at inclinations to less than 10°. Auckland Council Geomaps indicates the presence of reticulated service lines (e.g. stormwater and wastewater) surrounding the site's perimeter.

As the site is located in an urban area, any surface water runoff from onsite is anticipated to flow towards the nearby municipal drain located on Abbey Street to the south of the site.

During S&RC's geotechnical investigation completed in August 2023, groundwater was encountered beneath the site at depths between 1.5m bgl and 5.4m bgl. Based on the site and surrounding topography, groundwater flow direction beneath the site is anticipated to be to the north towards the Waitemata Harbour.

3.0 **Previous Environmental Investigations**

An overview of previous built development onsite is shown in Figure 4.

Figure 4: Previous Built Development

Preliminary Site Investigation, 2020, GHD Limited

In 2020, GHD Limited completed a Preliminary Site Investigation (PSI) for the site (Ref. 12/54/2917, *Preliminary Site Investigation – 538 Karangahape Road, Auckland*, November 2020). The PSI identified the following potential Hazardous Activities and Industries List (HAIL) activities or former activities at the site:

- Storage of tanks or drums for fuel, chemicals or liquid waste (HAIL Cat. A. 17);
- Asbestos products manufacture or disposal including sites with buildings containing Asbestos products known to be in a deteriorated condition (HAIL Cat. E. 1); and
- Motor vehicle workshops (HAIL Cat. F. 4).

Two structures were present onsite between 1940 and 1959 (cleared by 1970). The existing (as of the 2020 PSI) building onsite was constructed between 1970 and 1985 (already built from the 1985 aerial image). Property Files (i.e. Building Consent plan, dated 1973) and a Council Contamination Enquiry indicated the installation of underground waste oil tanks onsite. No further information was provided in the report regarding the tank removal.

More recent use of the existing building includes commercial tenancies including a bicycle showroom and workshop within the third floor (northern section), showroom and workshop for motor vehicles within the second floor, and an auto mechanical shop within the first floor (southern section of the building).

The GHD PSI recommended that further investigation (including sampling of underlying soils onsite) be carried out in relation to future site works.

Soil Benchmarking Assessment, March 2022, S&RC

In March 2022, S&RC completed a Soil Benchmarking Assessment at the site in support of a previous development scheme (Ref. 220086, *Soil Benchmarking Report – 538 Karangahape Road, Auckland City*, 18 March 2022). Limited soil sampling was undertaken to assess potential site contamination. Five soil samples were analysed for Heavy Metals, Total Petroleum Hydrocarbons (TPH), Polycyclic Aromatic Hydrocarbons (PAH) and/or Asbestos. Analytical results reported:

- All CoC concentrations complied with applicable MfE NES and Petroleum Hydrocarbon Guidelines (PHG) Commercial/Industrial Human Health criteria;
- Heavy Metals (Lead) concentrations in three soil samples (SS1, SS4 and SS5) exceeded AUP Environmental Discharge criteria;
- Asbestos was detected in two soil samples, but with Fibrous Asbestos/Asbestos Fines (FA/AF) concentrations below applicable Human Health Soil Guideline Values (SGV); and
- Heavy Metals concentrations were above Background Levels and/or TPH and PAH concentrations were
 above laboratory Method Detection Limits (MDL) in all soil samples.

Full tabulated results are provided in Table 2 in Section 7.0 of this document.

4.0 Soil Contamination Investigation

4.1 Identified Contaminants of Concern

The site was identified for potential soil contamination during the review of historical information and previous investigation reports. Of relevance to the site history, identified potential CoC for the site included Heavy Metals, TPH, PAH, and Asbestos.

4.2 Soil Investigation

Soil sampling was completed on two occasions at the site. Initial soil sampling was undertaken on 18 February 2022 as part of a Soil Benchmarking Assessment and Supplementary Soil Sampling was undertaken between 3 and 5 July 2023 as part of this DSI (this report).

Across the two sampling events, a total of 16 soil samples (seven shallow soil samples and nine deeper soil samples) were collected. All soil samples were submitted to the subcontract laboratory (Eurofins) for analysis of potential CoC, including Heavy Metals, TPH, PAH and/or Asbestos. Soil sampling details are described in Table 1 below. Sampling locations are shown on S&RC Drawing 220086/1 provided in Appendix A.

Location ID	Sample ID	Fieldwork Date	Depth (m bgl)	Soil Description	Analyses Performed
001	SS1		0.35	Fill (Silt)	Heavy Metals, TPH, PAH, Asbestos
551	SS1-1		0.8 – 1.0	PF (Silt)	Heavy Metals, TPH, PAH
SS3	SS3	18 Feb 2022	0.1	Fill (Silt)	Heavy Metals, TPH, PAH, Asbestos
SS4	SS4		0.1	Fill (Silt)	Heavy Metals, TPH, PAH, Asbestos
SS5	SS5		0.1	Fill (Silt)	Heavy Metals, TPH, PAH, Asbestos
	MB01-1		0.1 – 0.2	Fill (Gravel)	Heavy Metals, TPH, PAH, Asbestos
MD04*	MB01-2	4 Jul 2023	0.8 – 1.1	PF (Silt)	Heavy Metals, TPH, PAH, Asbestos
	MB01-3		2.0 – 2.2	PF (Silt)	Heavy Metals, TPH, PAH, Asbestos
	MB01-4		3.0 – 3.2	PF (Silt)	Heavy Metals, TPH, PAH, Asbestos
	MB02-2		1.0 – 1.2	PF (Silt)	Heavy Metals, TPH, PAH, Asbestos
MB05*	MB02-3	3 Jul 2023	2.0 – 2.2	PF (Silt)	Heavy Metals, TPH, PAH, Asbestos
	MB02-4		3.0 – 3.2	WWGS (Silt)	Heavy Metals, TPH, PAH, Asbestos
	MB03-1		0.1 – 0.2	Fill (Gravel)	Heavy Metals, TPH, PAH, Asbestos
MD06*	MB03-2	E 101 2022	1.0 – 1.2	PF (Silt)	Heavy Metals, TPH, PAH, Asbestos
IVIDUO	MB03-3	5 JUI 2023	2.0 – 2.2	PF (Silt)	Heavy Metals, TPH, PAH, Asbestos
	MB03-4		3.0 - 3.2	WWGS (Silt)	Heavy Metals, TPH, PAH, Asbestos

Table 1 – Sample Descriptions

ID = Identifier

m bgl = metres below ground level

PF = Puketoka Formation Soils (Natural)

PAH = Polycyclic Aromatic Hydrocarbons

WWGS = Weathered Waitemata Group Soils (Natural)

TPH = Total Petroleum Hydrocarbons

* MB04, MB05 & MB06 – corresponding Machine bores, as referred from S&RC's 2023 Geotechnical Investigation.

4.3 Soil Sampling Protocol

The DSI field investigation (3-5 July 2023) was carried out in conjunction with S&RC's Geotechnical Investigation (GIR Ref. 20111, *Geotechnical Investigation for Multi-Level Commercial Building at 538 Karangahape Road, Newton*, 22 August 2023) with soil samples collected from machine bores advanced at three locations.

Soil sampling equipment was decontaminated between sampling locations and disposable nitrile gloves were used and replaced between sampling locations in order to prevent cross contamination. All samples were collected in accordance with strict environmental sampling protocols to ensure reliable and representative results.

All sample containers were supplied by the subcontract laboratory and were consistent with specifications provided in Section 6.4 (Sample Handling) of Contaminated Land Management Guidelines No. 5 – Site Investigation and Analysis of Soils (MfE, Revised 2021). All samples were labelled with unique identifiers indicating the sampling location. Samples were couriered directly to the laboratory (Eurofins) under continuous Chain of Custody (COC) documentation. Each COC form had a unique laboratory number.

5.0 Regulations

Within the Auckland Region, investigations of contaminated and potentially contaminated sites are governed by rules under:

- MfE NES and PHG National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (MfE, revised 2021) and Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (MfE, revised 2011);
- AUP Auckland Unitary Plan Operative in part (notified 15 November 2016); and
- New Zealand Guidelines for Assessing and Managing Asbestos in Soil (Building Research Association New Zealand [BRANZ], 2017).

While part of our report assesses potential planning and Resource Consent requirements from relevant authorities, these sections are provided for reference only. Guidance/clarification should be sought from an Environmental Planning Specialist.

5.1 National Environmental Standard – Contaminants in Soil

The Resource Management Regulations 2011, National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health (NES) came into force on 1 January 2012, with Contaminated Land Management Guidelines revised in 2011 and 2021. The NES for contaminants in soil incorporates by reference MfE contaminated land documents, including MfE Contaminated Land Management Guidelines for the investigation, assessment and reporting of contaminated land within New Zealand. These documents are aimed to provide national consistency in the reporting of contaminated site information. These documents are:

- Contaminated Land Management Guidelines (No. 1, 2 and 5);
- HAIL;
- Methodology of Deriving Soil Guideline Values Protective of Human Health; and
- Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand.

Copies of the above guideline documents are available at www.mfe.govt.nz.

5.2 Auckland Unitary Plan

The AUP (notified 15 November 2016) is Auckland's key resource management document under the Resource Management Act (RMA, 1991). Matters relating to contaminated land can be referred from:

- Regional Policy Statement (B10.4 Land Contamination); and
- Chapter E Auckland-wide, Environmental Risk (E.30 Contaminated Land).

5.3 New Zealand Guidelines for Assessing and Managing Asbestos in Soil

The New Zealand Guidelines for Assessing and Managing Asbestos in Soil were published in 2017. The guidelines provide direction around identifying, assessing and managing Asbestos in soil in New Zealand and establish Human Health SGV.

6.0 Assessment Criteria

The site is zoned 'Business – City Centre Zone'. The proposed redevelopment for the site comprises construction of a new commercial building. For this assessment, soil analytical results were compared against:

- NES Commercial/Industrial Human Health criteria;
- PHG Human Health criteria for Commercial/Industrial use;
- AUP Environmental Discharge criteria; and
- Asbestos SGV for Commercial and Industrial sites.

Due to the Puketoka Formation soils and Waitemata Group sediments mapped and encountered beneath the site, soil analytical results were also compared against:

• Auckland Region Background Levels for Non-Volcanic soils.

7.0 Analytical Results

Sixteen soil samples (seven shallow soil samples and nine deeper soil samples) were collected across two sampling events and analysed for CoC, including Heavy Metals, TPH, PAH and/or Asbestos. Laboratory analytical results reported:

- All CoC concentrations complied with MfE NES and PHG Commercial/Industrial Human Health criteria;
- Heavy Metals (Lead) concentrations in three soil samples (SS1, SS4 and SS5), comprising shallow (less than 0.4m bgl) fill material, exceeded AUP Environmental Discharge criteria;
- Asbestos was detected in two soil samples (SS1 and SS4), but with FA/AF concentrations below applicable Asbestos Human Health SGV; and
- Heavy Metals concentrations were above Background Levels and/or TPH and PAH concentrations were above laboratory MDL in most soil samples.

Laboratory analytical results are summarised in Tables 2 and 2a below. Soil sampling locations are shown on S&RC Drawing 220086/1 provided in Appendix A. Laboratory analytical results and COC documentation are provided in Appendix C.

1	Λ	
I	v	

		Test Analysis Levels (mg/kg)						MfE				
Sample ID		SS1	SS1-1	SS3	SS4	SS5		PHG ²			Asbestos	Background
Sampl	e Soil Type	Fill (Silt)	PF (Silt)	Fill (Silt)	Fill (Silt)	Fill (Silt)	NES 1	Sandy Silt			SGV ⁴	(Non-Volcanic) 5
Sample	e Depth (m)	0.35	0.8 – 1.0	0.1	0.1	0.1		<1m	1m – 4m			(Non-Voicanic)
	As	4.8	3.3	12	8.8	11	70	-	-	100	-	12
	Cd	0.17	< MDL	0.34	0.39	0.74	1,300	-	-	7.5	-	0.65
	Cr	25	17	47	72	50	6,300	-	-	400	-	55
Heavy	Cu	59	6.3	57	44	150	10,000	-	-	325	-	45
Metals	Pb	830	14	170	250	260	3,300	-	-	250	-	65
	Hg	0.32	0.16	0.15	0.29	0.21	4,200	-	-	0.75	-	0.45
	Ni	43	7.1	67	51	51	3,000 ⁶	-	-	105	-	35
	Zn	110	9.8	200	190	280	35,000 ⁶	-	-	400	-	180
	C ₇ -C ₉	< MDL	< MDL	< MDL	< MDL	< MDL	-	(500) ^m	(500) ^m	-	-	-
TPH	C ₁₀ -C ₁₄	< MDL	< MDL	< MDL	< MDL	< MDL	-	(1,700) ×	(2,200) ×	-	-	-
	C ₁₅ -C ₃₆	< MDL	< MDL	46	23	62	-	(20,000)	(20,000)	-	-	-
	BaP Eq.	14	0.04	2.2	6.1	0.88	35	_ 7	_ 7	20	-	-
PAH	Naphthalene	0.2	< MDL	< MDL	0.2	< MDL	-	(210) ^v	(270) v	-	-	-
	Pyrene	14	0.05	3.9	9.9	1.4	-	(20,000)	(20,000)	-	-	-
	D/ND	D	-	ND	D	ND	-	-	-	-	-	-
Asbestos	ACM	-	-	-	-	-	-	-	-	-	0.05	-
	FA/AF	0.0000059	-	-	0.00064	-	-	-	-	-	0.001	-

11

Table 2a: Soil Analytical Results	(S&RC Detailed Site	Investigation – July 2023)
	`	

		Test Analysis Levels (mg/kg)											MfE				Backgrou		
San	nple ID	MB01	MB01	MB01	MB01	MB02	MB02	MB02	MB03	MB03	MB03	MB03		PHG ²		PHG ² Asbest		Asbest	nd Level
	•	-1	-2	-3	-4	-2	-3	-4	-1	-2	-3	-4	NES ¹			AUP 3	os SGV	(Non-	
Sample	e Soil Type	Gravel	Silt	Silt	Silt	Silt	Silt	Silt	Gravel	Silt	Silt	Silt		Sanc	ly Silt		4	Volcanic)	
Sample	Depth (m)	0.1	0.8	2.0	3.0	1.0	2.0	3.0	0.1	1.0	2.0	3.0		<1m	1m – 4m			5	
	As	3.3	3.3	1.7	1	12	1.2	8.8	6.6	1	1.1	1.7	70	-	-	100	-	12	
	Cd	0.11	< MDL	0.11	< MDL	0.01	0.02	0.06	0.19	< MDL	< MDL	< MDL	1,300	-	-	7.5	-	0.65	
	Cr	39	17	13	12	23	24	25	28	21	28	24	6,300	-	-	400	-	55	
Heavy	Cu	57	2.9	4.2	3.9	8.7	5.6	16	31	4.1	5.8	7.5	10,000	-	-	325	-	45	
Metals	Pb	32	7.3	6	3.2	19	5.2	5.1	31	6.2	5.1	5.2	3,300	-	-	250	-	65	
	Hg	0.08	0.11	0.15	0.07	0.18	0.06	0.08	0.07	0.14	0.09	0.06	4,200	-	-	0.75	-	0.45	
	Ni	110	5.5	5.4	1.1	10	3.8	2.7	34	6.3	3.2	3.3	3,000 ⁶	-	-	105	-	35	
	Zn	87	6.9	5.5	< MDL	15	16	17	110	5.8	< MDL	5.4	35,000 ⁶	-	-	400	-	180	
	C ₇ -C ₉	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	-	(500) m	(500) m	-	-	-	
TPH	C ₁₀ -C ₁₄	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	-	(1,700)×	(2,200) ×	-	-	-	
	C ₁₅ -C ₃₆	140	110	33	< MDL	150	69	74	140	77	< MDL	< MDL	-	(20,000)	(20,000)	-	-	-	
	BaP Eq.	1.8	0.99	0.08	0.04	0.5	0.04	0.05	0.5	0.24	0.04	0.05	35	_ 7	_ 7	20	-	-	
PAH	Naphthalene	< MDL	0.8	< MDL	< MDL	< MDL	< MDL	-	(210) v	(270) v	-	-	-						
	Pyrene	< MDL	0.77	0.28	< MDL	0.71	< MDL	< MDL	0.95	0.62	< MDL	< MDL	-	(20,000)	(20,000)	-	-	-	
	D/ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-	-	-	-	-	-	
Asbestos	ACM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.05	-	
	FA/AF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.001	-	

Notes: Concentration: Values below accepted Background Levels (Heavy Metals) and/or laboratory MDL (TPH, PAH)

Concentration: Values above accepted Background Levels and/or laboratory MDL but in compliance with relevant criteria

Concentration: Values above relevant acceptance criteria

ND = Asbestos Not Detected \mathbf{D} = Asbestos Detected

¹ NES – MfE NES Human Health Criteria for Commercial/Industrial Use (MfE, 2012)

² PHG – Soil MfE Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (2011) Tier 1 Soil Acceptance Criteria for Commercial/Industrial Use (All Pathways), 'Sandy Silt' soil types, <1m. Brackets denote values exceed threshold likely to correspond to formation of residual separate phase hydrocarbons. Limiting pathway for each criterion: v = volatilisation, s = soil ingestion, d = dermal, p = produce, m = maintenance/excavation, x = PAH surrogate

³ AUP – AUP Permitted Activity Soil Acceptance Criteria for Environmental Discharge: Auckland Unitary Plan Operative in part (AUP, 2016)

⁴ Asbestos SGV – Asbestos Soil Guidelines Values (%w/w) for Asbestos Containing Material (ACM) and Fibrous Asbestos/Asbestos Fines (FA/AF) for Commercial and Industrial sites, New Zealand Guidelines for Assessing and Managing Asbestos in Soil (BRANZ, 2017).

⁵ Auckland Region Background Level – Schedule 11: Auckland Regional Plan (Non-Volcanic Soils)

⁶ Australian Health Investigation Levels for Commercial/Industrial use (NEPC, 1999), applied in accordance with MfE Contaminated Land Guidelines No. 2

⁷ Where NES and/or Regional Council acceptance criteria values are available, NES and/or Regional Council values are applied over PHG criteria

8.0 Discussion

8.1 Conceptual Site Model

A Conceptual Site Model (CSM) was developed for the site to provide a preliminary assessment of potential effects on Human Health and the Environment. The CSM is presented in Table 3 below:

Table 3 –	Conceptual	Site Model
-----------	------------	------------

Exposure Pathway	Potential Receptors	Risk Assessment	
<u>Human Health</u> Soil Ingestion, Inhalation (Dust),	<u>During Construction</u> Subsurface Construction / Maintenance Workers	 CoC concentrations in all soil samples were below MfE NES and PHG Human Health criteria; Asbestos was detected in two soil samples, but at concentrations below Human Health SGV; and 	Minimal Risk / Risk Must be
Dermal Contact, Produce	After Construction Subsurface Construction / Maintenance Workers, On-site Users	• A Site Management Plan/Remediation Action Plan (SMP/RAP) has been prepared for the site, outlining remediation and control measures to be implemented prior to/during redevelopment.	Managed
	<u>During Construction</u> Groundwater, Flora / Fauna	 CoC concentrations exceeded applicable AUP Environmental Discharge criteria; Asbestos was detected in two soil samples, but at concentrations below applicable Human Health SGV and therefore not considered a risk to the Environment; Heavy Metals concentrations were above 	
<u>Environmental</u> <u>Discharge</u> Contaminant Migration	<u>During Construction</u> Groundwater, Flora / Fauna	 Background Levels and TPH and/or PAH concentrations were above laboratory MDL in most soil samples; The nearest surface water to the site is located 1.7km north of the site; Groundwater was encountered onsite at depths between 1.5m bgl and 5.4 m bgl beneath the site; A SMP/RAP has been prepared for the site, outlining remediation and control measures to be implemented prior to/during redevelopment; and Any fill material disposed of off-site will be disposed of at a facility licenced to accept such materials. 	Risk Must be Managed

8.2 Regulatory Implications

Based on findings from this investigation, Table 4 presents potential Resource Consent requirements for the proposed activity under the provisions of the NES and AUP. This investigation presents factual information for the site. Matters of control and discretion, however, rest with the consenting authority (Auckland Council) based on their assessment of this report. It would be appropriate to seek clarification of Auckland Council or an Environmental Planning Specialist for further information on resource consenting requirements.

	Potential Applicable Planning Rules					
National Environmental	CONTROLLED ACTIVITY, subject to requirements under Rule 9					
Standard (NES)	A DSI (this investigation) has been prepared for the site;					
	 Concentrations of target contaminants complied with NES Human Health criteria; 					
	Asbestos was detected, but at concentrations below Human Health SGV;					
	 Controlled Activity status assumes a SMP will be prepared for the site and the site will be managed; and 					
	Conditions of Rule 9 must be complied with.					
Auckland Unitary Plan	CONTROLLED ACTIVITY (Chapter E30.6.2)					
Operative in part (AUP)	A DSI (this investigation) has been prepared for the site;					
	 Concentrations of target contaminants exceeded AUP Environmental Discharge criteria; 					
	 Asbestos was detected in soil samples, but at concentrations below Human Health SGV and therefore not considered a risk to the Environment; Controlled Activity status assumes a SMP/RAP will be prepared for the site and the site will be managed/remediated; and Conditions of Chapter E30.6.2 must be complied with. 					
Asbestos Regulations 2016,	UNLICENSED ASBESTOS WORK					
WorkSafe Guidelines	 Asbestos was detected, but with FA/AF concentrations ≤0.001% and/or ACM concentrations ≤0.01%; and 					
	Asbestos Regulations 2016 and WorkSafe Guidelines must be adhered to.					

Table 4 – Current Regulations and Potential Resource Consent Requirements

9.0 Conclusion

This DSI was carried out for the site in accordance with the scope of work and current applicable regulations. This report has been prepared in accordance with MfE's Guidelines for Contaminated Site Investigations and Auckland Council requirements. The investigation and reporting have been prepared, reviewed and authorised by SQEP, as required under the NES.

Sixteen soil samples (seven shallow soil samples and nine deeper soil samples) were collected from the site and analysed for CoC, including Heavy Metals, TPH, PAH, and/or Asbestos. Laboratory analytical results reported:

- All CoC concentrations complied with MfE NES and PHG Commercial/Industrial Human Health criteria;
- Heavy Metals (Lead) concentrations in three soil samples (SS1, SS4 and SS5), comprising shallow (less than 0.4m bgl) fill material, exceeded AUP Environmental Discharge criteria;
- Asbestos was detected in two soil samples (SS1 and SS4), but with FA/AF concentrations below Asbestos Human Health SGV; and
- Heavy Metals concentrations were above Background Levels and/or TPH and PAH concentrations were above laboratory MDL in most soil samples.

10.0 Recommendations

Based on these findings:

- A SMP/RAP has been prepared for the site, outlining remediation and control measures to be in place in order to ensure that site conditions are protective of Human Health and the Environment;
- Soil/fill material with Heavy Metals concentrations above applicable Environmental Discharge criteria shall be remediated (excavated and disposed of off-site or otherwise isolated);
- Any soil/fill material disposed of off-site as part of site redevelopment would not be considered 'Cleanfill' and must be disposed of at a facility licensed to accept such materials. Findings from this report should be presented to the receiving facility for reference; and
- Any visual/olfactory evidence of contamination discovered during site works should be segregated and analysed prior to disposal.

End of Report Text – Appendices Follow

Appendix A

Investigation Plan

Appendix B

Machine Bore Logs (S&RC Geotechnical Investigation, 2023) – MB04, MB05 & MB06

			CLIENT: James Kirkpatrick Ltd						Machine Borehole No: MB/PZ04	
	Your responsive & cost-effective engineers		PROJECT: 538 Karangahape Road, Newton, Auckland					Sheet 1 of 4		
	Drill Type: Machine Bore Project No: 20111							Logge	ed By:	DEG
	Drilled By:	PRO DRILL LTD	Coordinates:					Shear	r Vane	No - Calibration Date: GEO3564 - 2/05/2023
	Date Finished:	4/7/23	Water Level:					Gund		
STRATICRADHV	GRAPHIC LOG	Soil description in ac S "Guidelines for Fie E	cordance with the NZ Geotechnical Society Inc 2005 Id Description of Soil and Rock in ngineering Use"	WATER LEVEL (m)	e DEPTH (m)	SAMPLE TYPE	c _u / SPT (kPa) (blows/300mm)	DRILLING METHOD	RECOVERY (%)	STANDPIPE PIEZOMETER Ø32mm
	SILT, some fine to coarse gravel, some fine to sand, grey, brown, stiff, wet, slightly plastic (F				_			er A A A A	\bigotimes	
	× × × × × × × × × × × × × × × × × × ×	SILT, some clay, r orange, yellowish – (WEATHERED W	ninor fine sand, orange brown, brown, stiff, moist, slightly plastic /AITEMATA GROUP SOILS)		0.5 			Flight Aug		× × Bentonite
		clayey SILT, trace orange, stiff, mois 	fine sand, orange, yellowish t, moderately plastic ine sand, orange, yellowish grey,	_	 <u>1.0</u>					
		stiff, moist, highly - clayey SILT, trace	fine sand, orange, stiff, moist,	-	 1.5		V,67 VR,30		X	
		silty CLAY, trace f				1 2 2 2		\bigotimes		
		└── light grey with ora	nge mottles, very stiff		 2.0 2.5		N=8			
ENATA GR		light grey, orange			<u>2.5</u> 			e e		
28/7/23 \/\/A TF		orange with grey a pink, orange	fine sand light gray nink very stiff		<u></u>		V,140 VR,67	Open Barr	\bigotimes	
R_2013.GDT		wet, moderately p	lastic				1 1 2 2 2			
- 04JUL2023.GPJ S+	* * * * * * * * * * * * * * * * * * *	SILT, some clay, i streaks, very stiff, clayey SILT, trace moderately plastic light grey with ora	minor fine sand, light grey with pink wet, slightly plastic fine sand, light grey, pink, stiff, wet, greg and pink streaks		3 <u>.5</u> 		N=7			
0 20111 MB04 - MB06	× × × × × × × × × × × × × × × × × × ×	orange, light oran	ge		<u>4.0</u> 		V,76			
NE BORES WITH PIEZ	× × × × × × × × × × × × × × × × × × ×		ninor fine sand, grey, stiff, wet,	-	<u>4.5</u> 		VR,32 1 0 1 1 1 1 N=4			
MACHI										

				CLIENT: James Kirkpatrick Ltd							Machine Borehole No: MB/PZ04	
	Your responsive & cost-effective engineers		KOCK CONSUITANTS esponsive & cost-effective engineers	PROJECT: 538 Karangahape Road, Newton, Auckland						Sheet 4 of 4		
f	Drill	Drill Type: Machine Bore Project No: 20111							Logge	ed By:	DEG	
	Drill	Drilled By: PRO DRILL LTD Coordinates:							Shear	Vane	No - Calibration Date: GEO3564 - 2/05/2023	
	Date	Date Started: 4/1/23 Ground Elevation: Date Finished: 4/7/23 Water Level:							Sunac		nditions. Signt Sloping, Graver	
	STRATIGRAPHY	GRAPHIC LOG	Soil description in ac S Guidelines for Fie E	cordance with the NZ Geotechnical Society Inc 2005 Id Description of Soil and Rock in ngineering Use"	WATER LEVEL (m)	0.05 DEPTH (m)	SAMPLE TYPE	$c_u \sim \frac{SPT}{(k^{Pa})}$	DRILLING METHOD	RECOVERY (%)	STANDPIPE PIEZOMETER Ø32mm	
	(GROUP		silty fine to mediu saturated dense / weakly ce slightly weathered weak (WAITEMA moderately weath SANDSTONE, ex medium SAND slightly weathered	m sand, grey, medium dense, mented I, grey, SILTSTONE, weak to very TA GROUP SOIL AND ROCK) ered, grey, fine to medium tremely weak, remoulds to fine to				10 24 26 for N=50+				
cs WITH PIEZO 20111 MB04 - MB06 - 04JUL2023.GPJ S+R_2013.GDT 28/7/23	WAITEMATA	×××××××××××××××××××××××××	moderately weath SANDSTONE, ex medium sand slightly weathered fine to medium SA weakly cemented, slightly weathered (WAITEMATA GF trace lignite fragm slightly weathered - - - - fracture dipping 4 no discoloration	ered, grey, fine to medium tremely weak, remoulds to fine to I, grey, SILTSTONE, weak AND, some silt, grey, very dense / saturated I, grey, SILTSTONE, weak COUP ROCK) tents as brown streaks I, grey, fine SANDSTONE, weak 5°, rough, aperture <1mm, no infill, 9.67 METRES.				15 32 13 for 20mm N=50+ 58 for 95mm N=50+				
MACHINE BORE		-	(TAKGET DEPTH)	1		2 <u>0.0</u>						

			CLIENT: James Kirkpatrick Ltd							Machine Borehole No: MB/PZ05
	Your responsive & cost-effective engineers		PROJECT: 538 Karangahape Road, Newton, Auckland							Sheet 1 of 4
D	rill Type:	Machine Bore	Project No: 20111					Logge	ed By:	DEG
	rilled By: ate Started [.]	PRO DRILL LTD 3/7/23	Coordinates: Ground Elevation:					Shear Surfa	r Vane ce Cor	No - Calibration Date: GEO3564 - 2/05/2023
D	ate Finished:	3/7/23	Water Level:							
STRATIGRAPHY	GRAPHIC LOG	Soil description in accordance with the NZ Geotechnical Society Inc 2005 "Guidelines for Field Description of Soil and Rock in Engineering Use"		WATER LEVEL (m)	o DEPTH (m)	SAMPLE TYPE	C _u / SPT	DRILLING METHOD	RECOVERY (%)	STANDPIPE PIEZOMETER Ø32mm
FILL		ASPHALT SLAB f fine to coarse ang (GRAVEL FILL)	for 35mm (FILL) Jular GRAVEL, grey, dense, moist	1	_				\bigotimes	
		silty CLAY, trace f mottles, very stiff, WAITEMATA GR	ine sand, light grey with orange moist, highly plastic (WEATHERED OUP SOILS)		 0.5 		V,119 VR,60			× × ■ Bentonite
		clayey SILT, trace orange streaks, ve –	fine sand, light grey with some ery stiff, moist, moderately plastic		 <u>1.0</u>		V,99 VR,48			
		orange, light grey, minor fine sand SILT, minor fine s orange and pink s	, pink and, some clay, light grey with treaks, stiff, wet, slightly plastic	_	 <u>1.5</u> <u>2.0</u>		V,95 VR,29 0 1 0 1 1 N=3			
EMATA GROUP		clayey SILT, trace streaks, stiff, wet, yellow, orange, lig	fine sand, pink and light grey moderately plastic ht grey	-	 2.5 			OB		
2013.GUI 28///23 WAITE		SILT, some fine so orange, stiff, wet, clayey SILT, trace wet, moderately p SILT, some fine so slightly plastic	and, some clay, grey, orange, dark slightly plastic fine sand, orange, dark grey, stiff, lastic and, minor clay, grey, stiff, wet,		 <u>3.0</u>		V,51 VR,19 0 1 0 1			
4JUL2023.GPJ 8+K		 Slightly plastic SILT, some fine to stiff, wet, slightly p clayey SILT, trace moderately plastic fine to medium sa 	o medium sand, some clay, grey, olastic fine sand, grey, very stiff, moist, c ndy SILT, minor clay, grey, stiff, wet,		 3.5 		N=3			
1 MBU4 - MBU6 - U		slightly plastic - clayey SILT, trace	fine sand, grey, very stiff, moist.		<u>4.0</u>					
PIEZO 2011		moderately plastic			<u>4.5</u>		V,118 VR,54 1			Filter
		SILT, some clay, r fragments, grey w slightly plastic	minor fine sand, trace lignite ith black speckles, very stiff, wet,				1 1 2 2 3		\bigotimes	Slotted Pipe
MACHINE BC	× <u>×</u> ×;	moderately plastic			<u>5.0</u>		N=8		***	

	Coil	Pook Concultanta	CLIENT: James Kirkpatrick L	es Kirkpatrick Ltd						Machine Borehole No: MB/PZ05		
	Your responsive & cost-effective engineers PROJECT: 538 Karangahape Road,				Newt	ton, A	ucklar	nd		Sheet 2 of 4		
	Drill Type: Machine Bore Project No: 20111							Logge	d By: Vane	DEG		
	Date Started: 3/7/23 Ground Elevation: Date Enished: 3/7/23 Water Level:							Surfac	ce Cor	nditions: Slight Sloping, Asphalt		
STRATIGRAPHY	GRAPHIC LOG	Soil description in ac S "Guidelines for Fie E	cordance with the NZ Geotechnical Society Inc 2005 Id Description of Soil and Rock in ngineering Use"	WATER LEVEL (m)	²⁰ DEPTH (m)	SAMPLE TYPE	$c_u \sim SPT \ (k_{Pa}) \sim (blows/300mm)$	DRILLING METHOD	RECOVERY (%)	STANDPIPE PIEZOMETER Ø32mm		
BORES WITH PIEZO 20111 MB04- MB06-04JUL2023.GPJ S+R_2013.GDT 28/7/23 WAITEMATA GROUP		 clayey SILT, trace moderately plastic hard SILT, some fine s slightly plastic clayey SILT, trace moderately plastic clayey SILT, trace moderately plastic moderately weath SANDSTONE, ve SOIL AND ROCK fine to medium S/ cemented SILT, some clay, fine to medium S/ cemented, satura trace lignite as bla SILT, some fine s slightly plastic trace fine to medium S/ cemented, satura trace lignite as bla SILT, some fine s slightly plastic trace fine to medium S/ cemented, satura trace lignite as bla SILT, some fine s slightly plastic trace fine to medium S/ cemented, satura trace fine to mediu SILT, some fine s slightly plastic trace fine to mediu SILT, some fine s slightly plastic trace fine to mediu Moderately weath SANDSTONE, ve moderately weath weak, remoulds to SILT, some clay, fine to moderately weath weak, remoulds to SILT, some clay, fine to moderately plastic Clayey SILT, trace moderately plastic 	fine sand, grey, very stiff, moist, and, minor clay, grey, hard, moist, fine sand, grey, hard, moist, ered, grey, fine to medium ry weak (WAITEMATA GROUP) ND, grey, very dense/weakly race fine sand, grey, hard, moist, fine sand, grey, hard, moist, fine sand, grey, hard, moist, wND, minor silt, grey, dense / weakly ed ick speckles and, some clay, grey, hard, moist, im sand ered, grey, fine to medium ry weak ered, grey, SILTSTONE, extremely o SILT some clay minor fine to medium sand, grey, y plastic		5.0 - - - - - - - - - - - - -		V,200+ UTP 1 2 5 5 6 N=21 V,200+ UTP 3 7 9 11 10 N=40 V=2 2 2 2 4 5 6 N=17					
MACHINE	× ×	_			1 <u>0.0</u>				\sim	17-17-17-18-18-18-18-18-18-18-18-18-18-18-18-18-		

	CLIENT: James Kirkpatrick L										Machine Borehole No: MB/PZ06
	Your responsive & cost-effective engineers			PROJECT: 538 Karangahape Road, Newton, Auckland							Sheet 1 of 3
F	Drill Type: Machine Bore Project No: 20111								Logg	jed By:	DEG
	Drill Date	ed By: e Started:	PRO DRILL LTD 5/7/23	Coordinates: Ground Elevation:					Shea Surfa	ar Vane ace Cor	No - Calibration Date: GEO3564 - 2/05/2023 aditions: Slight Sloping, Gravel
	Date Finished: 5/7/23 Water Level:										
	SIRAIIGRAPHY	GRAPHIC LOG	Soil description in ac S "Guidelines for Fie E	cordance with the NZ Geotechnical Society Inc 2005 Id Description of Soil and Rock in ngineering Use"	WATER LEVEL (m)	o DEPTH (m)	SAMPLE TYPE	C _u / SPT	DRILLING METHOD	RECOVERY (%)	STANDPIPE PIEZOMETER Ø32mm
			fine to coarse ang sand, some silt, liq (GRANULAR FILI	ular GRAVEL, some fine to coarse ght grey, brown, grey, loose, wet -)		_			j.		
		××××× 	silty CLAY, trace f plastic (WEATHE	ine sand, orange, stiff, moist, highly RED WAITEMATA GROUP SOILS)		<u>0.5</u>			Flight Auge		Bentonite
		 × × ×7	🦳 orange, orange gr	еу		_		V 05			
		* <u>* *</u> ,				_		VR,48		XX	
		× × →	<			<u>1.0</u>					
		* ×	yellow, orange, lig	ht orange, light grey		_					
		×									
		, ×, ×,				15		V,83		Ø	
		×X	clayey SILT, trace orange, yellow, st	fine to medium sand, light grey, iff, moist, moderately plastic				1		$\overline{\otimes}$	
		× <u>×</u> ×,				_		2 1 1		\boxtimes	
		× × , * * *				_		2 N=6		\bigotimes	
		× × ×	_			<u>2.0</u>				\bigotimes	
		× × × ×				_				\bigotimes	
	ч Л	$\frac{x}{x} \times \frac{x}{x}$				_				\bigotimes	
	545	~~~~}	_			<u>2.5</u>				\bigotimes	
	AIAI	×^×,				_				\boxtimes	
7/23	VALLEN	× × ×	silty CLAY, trace f grey, stiff, wet, hig	ine sand, orange, yellow, yellow hly plastic	-			V,62	0B XXXX		
DT 28		× _ ×	blue grey, grey			<u>3.0</u>		1 1		Ď	
013.G		×				_		1 1 1		\bigotimes	
S+R		× ×	clayey SILT, trace	fine sand, grey, stiff, moist,		_		1 N=4		\bigotimes	
3.GPJ		×		,		<u>3.5</u>				\bigotimes	
JUL202		× × × × ×	SILT some fine sa firm, wet, slightly p	and, some clay, orange, dark orange, plastic		_				\bigotimes	
<u> 16</u> - 04,		× × × ×								\bigotimes	
- MBC		× × × × × × — ×	 clavev SILT. trace	fine sand. grev. firm. wet.		<u>4.0</u>				\bigotimes	
1 MB04		× × ;	moderately plastic	, <u>,</u> , <u>,</u> ,, ,,		_				\bigotimes	
2011		ŶŦŶ	+:##					VEA		\bigotimes	
PIEZO		*^*_}	~ suπ ─_ firm			<u>4.5</u>		VR,48 0		\bigotimes	
WITH F		× · × × × ×	fine to medium sa	ndy SILT, trace clay, grey, firm, wet,	1			0		\bigotimes	
ORES		× × × × ×	SILT some clay, tr	race fine sand, grey, stiff, wet,	1	-		1 2 N=3		\bigotimes	
HNE B(× × ×				<u>5.0</u>		с-и		XX	
MACF											

	CLIENT: James Kirkpatrick Lt										Machine Borehole No: MB/PZ06
		Soil&	ROCK CONSULTANTS esponsive & cost-effective engineers	PROJECT: 538 Karangahape Road, Newton, Auckland						Sheet 2 of 3	
\vdash	Drill Type: Machine Bore Project No: 20111							DEG			
	Drilled By: PRO DRILL LTD Coordinates:								Shear	Vane	No - Calibration Date: GEO3564 - 2/05/2023
	Date	e Started:	5/7/23	Ground Elevation:					Surfac	e Co	nditions: Slight Sloping, Gravel
	Date	e Finished:	5/7/23	Water Level:				Ē			
	SIKALIGKAPHY	GRAPHIC LOG	Soil description in ac S "Guidelines for Fie E	coordance with the NZ Geotechnical Society Inc 2005 Id Description of Soil and Rock in Ingineering Use"	WATER LEVEL (m	DEPTH (m)	SAMPLE TYPE	C _u / SPT (kPa) (blows/300mm	DRILLING METHOD	RECOVERY (%)	STANDPIPE PIEZOMETER Ø32mm
4E BORES WITH PIEZO 20111 MB04 - MB06 - 04JUL2023.GPJ S+R_2013.GDT 28/7/23	WAITEMATAGROUP		 clayey SILT, trace moderately plastic SILT some fine sa slightly plastic Clayey SILT, trace moderately plastic SILT some fine sa slightly plastic SILT some fine sa slightly plastic SILT some fine sand clayey SILT, trace moderately plastic minor fine sand SILT some clay, tr slightly plastic moderately weath weak, remoulds to moderately weath weak, remoulds to moderately weath weak, remoulds to moderately weath weak moderately w	in sand, grey, very stiff, moist, and, some clay, grey, stiff, wet, fine sand, grey, very stiff, moist, and, some clay, grey, very stiff, wet, m SAND, grey, loose, saturated fine sand, grey, hard, wet, c				V,83 VR,29 1 1 2 3 2 N=8 V,151 VR,64 2 1 1 2 2 2 N=7 V,200+ UTP 2 3 3 4 5 7 N=19	HOIT OB DR		Filter Pack Slotted Pipe
MACH											

			Deals Operations	CLIENT: James Kirkpatrick Ltd						Machine Borehole No: MB/PZ06			
		Your 1	KOCK CONSUITANTS responsive & cost-effective engineers	PROJECT: 538 Karangahape Road, Newton, Auckland						Sheet 3 of 3			
	Drill Type: Machine Bore Project No: 20111 Drilled By: PRO DRILL LTD Coordinates:					Logged I Shear V					/: DEG		
	Date Date	e Started: e Finished:	5/7/23 5/7/23	Ground Elevation: Water Level:					Surfa	ace Cor	ditions: Slight Sloping, Gravel		
	STRATIGRAPHY	GRAPHIC LOG	Soil description in ac S "Guidelines for Fie E	cordance with the NZ Geotechnical Society Inc 2005 Id Description of Soil and Rock in ngineering Use"	WATER LEVEL (m)	0.0 10.0	SAMPLE TYPE	c_{u} / SPT (KPa) (kPa) (blows/300mm)	DRILLING METHOD	RECOVERY (%)	STANDPIPE PIEZOMETER Ø32mm		
2HINE BORES WITH PIEZO 20111 MB04 - MB06 - 04JUL2023.GPJ S+R_2013.GDT 28///23	WAITEMATA GROUP		GROUP SOIL AN SILT some fine sa slightly plastic moderately weath weak, remoulds to fine sandy SILT, g moderately weath weak, remoulds to silty, fine to mediu moderately weath weak, remoulds to SILT some fine sa slightly plastic slightly weathered (WAITEMATA GR moderately weath clayey SILT slightly weathered SANDSTONE, we fine SANDSTONE slightly weathered SILT SOME fine SANDSTONE slightly weathered	D ROCK) and, some clay, grey, hard, moist, ered, grey, SILTSTONE, extremely o SILT some clay prey, hard, moist, non plastic ered, grey, SILTSTONE, extremely o SILT some clay im SAND, grey, dense, saturated ered, grey, SILTSTONE, extremely o SILT some clay and, some clay, grey, hard, moist, l, grey, SILTSTONE, very weak COUP ROCK) ered, extremely weak, remoulds to l, grey, fine to medium tak to very weak c, very weak t, grey, SILTSTONE, very weak				6 7 10 12 14 11 for 74mm N=50+ 0 3 for 15mm N=50+ 0 30 10 for 20mm N=50+	Натт		Backfill		

MB03 from 0.0m to 4.5m, Box 1 of 5

MB03 from 10.95m to 13m, Box 4 of 5

MB04 from 2.8m to 5.8m, Box 2 of 7

MB04 from 11.5m to 15.0m, Box 5 of 7

MB04 from 15.0m to 18.0m, Box 6 of 7

MB05 from 2.5m to 5.2m, Box 2 of 6

MB06 from 9.0m to 12.5m, Box 4 of 5

Appendix C

Laboratory Analytical Results and Chain of Custody Documentation

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Soil & Rock Consultants Level 1, 131 Lincoln Rd Henderson Auckland NEW ZEALAND

Attention:	
Report	
Project name	
Project ID	
Received Date	

864825-S 220086 Feb 18, 2022

Garry Cepe

Client Sample ID			SS1	SS1-1	SS3	SS4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K22-Fe39594	K22-Fe39595	K22-Fe39596	K22-Fe39597
Date Sampled			Feb 18, 2022	Feb 18, 2022	Feb 18, 2022	Feb 18, 2022
Test/Reference	LOR	Unit				
Total Petroleum Hydrocarbons (NZ MfE 1999)						
TPH-SG C7-C9	5	mg/kg	< 5	< 5	< 5	< 5
TPH-SG C10-C14	10	mg/kg	< 10	< 10	< 10	< 10
TPH-SG C15-C36	20	mg/kg	< 20	< 20	46	23
TPH-SG C7-C36 (Total)	35	mg/kg	< 35	< 35	50	< 35
Polycyclic Aromatic Hydrocarbons (NZ MfE)						
Comments					G01	
Acenaphthene	0.03	mg/kg	0.07	< 0.03	< 0.3	0.22
Acenaphthylene	0.03	mg/kg	0.42	< 0.03	< 0.3	1.1
Anthracene	0.03	mg/kg	0.73	< 0.03	0.61	1.4
Benz(a)anthracene	0.03	mg/kg	6.0	< 0.03	1.2	4.2
Benzo(a)pyrene	0.03	mg/kg	11	< 0.03	1.5	4.6
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	14	< 0.03	2.0	6.1
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	14	0.04	2.2	6.1
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	14	0.07	2.3	6.1
Benzo(b&j)fluoranthene ^{N07}	0.03	mg/kg	5.6	< 0.03	1.4	3.1
Benzo(g.h.i)perylene	0.03	mg/kg	2.1	< 0.03	0.44	0.58
Benzo(k)fluoranthene	0.03	mg/kg	5.9	< 0.03	1.5	2.6
Chrysene	0.03	mg/kg	6.2	0.04	2.1	3.2
Dibenz(a.h)anthracene	0.03	mg/kg	0.80	< 0.03	< 0.3	0.28
Fluoranthene	0.03	mg/kg	12	0.05	3.8	11
Fluorene	0.03	mg/kg	0.22	< 0.03	< 0.3	1.1
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	2.2	< 0.03	0.53	0.79
Naphthalene	0.1	mg/kg	0.2	< 0.1	< 0.3	0.2
Phenanthrene	0.03	mg/kg	5.3	< 0.03	1.0	9.0
Pyrene	0.03	mg/kg	14	0.05	3.9	9.9
p-Terphenyl-d14 (surr.)	1	%	109	118	107	104
2-Fluorobiphenyl (surr.)	1	%	123	98	93	116
Metals M8 (NZ MfE)						
Arsenic	0.1	mg/kg	4.8	3.3	12	8.8
Cadmium	0.01	mg/kg	0.17	< 0.01	0.34	0.39
Chromium	0.1	mg/kg	25	17	47	72
Copper	0.1	mg/kg	59	6.3	57	44
Lead	0.1	mg/kg	830	14	170	250
Mercury	0.01	mg/kg	0.32	0.16	0.15	0.29
Nickel	0.1	mg/kg	43	7.1	67	51
Zinc	5	mg/kg	110	9.8	200	190

Client Sample ID			SS1	SS1-1	SS3	SS4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K22-Fe39594	K22-Fe39595	K22-Fe39596	K22-Fe39597
Date Sampled			Feb 18, 2022	Feb 18, 2022	Feb 18, 2022	Feb 18, 2022
Test/Reference	LOR	Unit				
% Moisture	1	%	15	26	20	22

Client Sample ID			SS5
Sample Matrix			Soil
Eurofins Sample No.			K22-Fe39598
Date Sampled			Feb 18, 2022
Test/Reference	LOR	Unit	
Total Petroleum Hydrocarbons (NZ MfE 1999)	2011	01110	
TPH-SG C7-C9	5	ma/ka	< 5
TPH-SG C10-C14	10	ma/ka	< 10
TPH-SG C15-C36	20	ma/ka	62
TPH-SG C7-C36 (Total)	35	ma/ka	64
Polycyclic Aromatic Hydrocarbons (NZ MfE)			
Acenaphthene	0.03	mg/kg	< 0.03
Acenaphthylene	0.03	mg/kg	0.04
Anthracene	0.03	mg/kg	0.11
Benz(a)anthracene	0.03	mg/kg	0.53
Benzo(a)pyrene	0.03	mg/kg	0.64
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	0.88
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	0.88
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	0.88
Benzo(b&j)fluoranthene ^{N07}	0.03	mg/kg	0.64
Benzo(g.h.i)perylene	0.03	mg/kg	0.12
Benzo(k)fluoranthene	0.03	mg/kg	0.50
Chrysene	0.03	mg/kg	0.58
Dibenz(a.h)anthracene	0.03	mg/kg	0.04
Fluoranthene	0.03	mg/kg	1.2
Fluorene	0.03	mg/kg	< 0.03
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	0.14
Naphthalene	0.1	mg/kg	< 0.1
Phenanthrene	0.03	mg/kg	0.28
Pyrene	0.03	mg/kg	1.4
p-Terphenyl-d14 (surr.)	1	%	109
2-Fluorobiphenyl (surr.)	1	%	118
Metals M8 (NZ MfE)	1		
Arsenic	0.1	mg/kg	11
Cadmium	0.01	mg/kg	0.74
Chromium	0.1	mg/kg	50
Copper	0.1	mg/kg	150
Lead	0.1	mg/kg	260
Mercury	0.01	mg/kg	0.21
Nickel	0.1	mg/kg	51
Zinc	5	mg/kg	280
	1	r	
% Moisture	1	%	24

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Petroleum Hydrocarbons (NZ MfE 1999)	Auckland	Feb 22, 2022	14 Days
- Method: LTM-ORG-2010 TRH and BTEX in Soil and Water by GC FID and PT GCMS			
Polycyclic Aromatic Hydrocarbons (NZ MfE)	Auckland	Feb 22, 2022	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water by GC MSMS			
Metals M8 (NZ MfE)	Auckland	Feb 22, 2022	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Auckland	Feb 21, 2022	14 Days
- Method: LTM-GEN-7080 Moisture Content in Soil by Gravimetry			

Date Reported: Feb 25, 2022

Address: Levicon Rd Henderson Auckland NEW ZEALAND Project ID: 220086 Sample Detail	898 ad 06 33 4444 # 2370
Auckland weit: www.eurofins.com.au errait: EnviroSales@eurofins.com.au errait: EnviroSales@eurofins.com.au	ad 06 53 4444 # 2370
Company Name: Address: Soil & Rock Consultants Level 1, 131 Lincoln Rd Henderson Auckland NEW ZEALAND Order No.: Report #: 90011 64 9 835 1740 Received: Due: Fax: Feb 18, 2022 3:30 PM Due: Fax: Project Name: Project ID: 220086	
Project ID: 220086 Eurofins Analytical Services Manager : Karishma Patel Meals M8 (NZ ME) Sample Detail	
Eurofins Suite B21A-N.Z: Asbestos, Metais (As.Ccl.Cr.Cu.Ni.Pb.Zn.Hg) (NIZ MfE) Metais M8 (NZ MfE) Moisture Set Sample Detail	
Auckland Laboratory - IANZ# 1327 X X X X X	
Christchurch Laboratory - IANZ# 1290	
External Laboratory	
No Sample ID Sampling Matrix LAB ID Time Time Time Time Time	
1 SS1 Feb 18, 2022 Soil K22-Fe39594 X X X	
2 SS1-1 Feb 18, 2022 Soil K22-Fe39595 X X X	
3 SS3 Feb 18, 2022 Soil K22-Fe39596 X X X	
4 SS4 Feb 18, 2022 Soil K22-Fe39597 X X X	
5 SS5 Feb 18, 2022 Soil K22-Fe39598 X X X	
Test Counts 5 1 5 4	

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Terms

АРНА	American Public Health Association
сос	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
ТВТО	Tributyltin oxide (<i>bis</i> -tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1		-		
Total Petroleum Hydrocarbons (NZ MfE 1999)						
TPH-SG C7-C9	mg/kg	< 5		5	Pass	
TPH-SG C10-C14	mg/kg	< 10		10	Pass	
TPH-SG C15-C36	mg/kg	< 20		20	Pass	
TPH-SG C7-C36 (Total)	mg/kg	< 35		35	Pass	
Method Blank			1	1		
Polycyclic Aromatic Hydrocarbons (NZ MfE)						
Acenaphthene	mg/kg	< 0.03		0.03	Pass	
Acenaphthylene	mg/kg	< 0.03		0.03	Pass	
Anthracene	mg/kg	< 0.03		0.03	Pass	
Benz(a)anthracene	mg/kg	< 0.03		0.03	Pass	
Benzo(a)pyrene	mg/kg	< 0.03		0.03	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.03		0.03	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.03		0.03	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.03		0.03	Pass	
Chrysene	mg/kg	< 0.03		0.03	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.03		0.03	Pass	
Fluoranthene	mg/kg	< 0.03		0.03	Pass	
Fluorene	mg/kg	< 0.03		0.03	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.03		0.03	Pass	
Naphthalene	mg/kg	< 0.1		0.1	Pass	
Phenanthrene	mg/kg	< 0.03		0.03	Pass	
Pyrene	mg/kg	< 0.03		0.03	Pass	
Method Blank			I I I I I I I I I I I I I I I I I I I	1		
Metals M8 (NZ MfE)	1					
Arsenic	mg/kg	< 0.1		0.1	Pass	
Cadmium	mg/kg	< 0.01		0.01	Pass	
Chromium	mg/kg	< 0.1		0.1	Pass	
Copper	mg/kg	< 0.1		0.1	Pass	
Lead	mg/kg	< 0.1		0.1	Pass	
Mercury	mg/kg	< 0.01		0.01	Pass	
	mg/kg	< 0.1		0.1	Pass	
	mg/kg	< 5		5	Pass	
LCS - % Recovery			I I			
Total Petroleum Hydrocarbons (NZ MfE 1999)					_	
IPH-SG C7-C36 (Total)	%	107		70-130	Pass	
LUS - % Recovery				1		
Polycyclic Aromatic Hydrocarbons (NZ MfE)		440		70.400		
Accenaphthene	%	112		70-130	Pass	
Acenaphthylene	%	113		70-130	Pass	
Anthracene	%	93		70-130	Pass	
Benz(a)anthracene	%	85		70-130	Pass	
Benzo(a)pyrene	%	80		70-130	Pass	
Benzo(b&j)fluoranthene	%	76		70-130	Pass	
Benzo(g.n.l)perylene	%	86	<u> </u>	70-130	Pass	
Benzo(K)fluoranthene	%		<u> </u>	70-130	Pass	
	%	130	<u> </u>	70-130	Pass	
Dibenz(a.h)anthracene	%	88	<u> </u>	/0-130	Pass	
	%	100	<u> </u>	70-130	Pass	
	% 0/	100		70-130	Pass	
indeno(1.2.3-ca)pyrené	%	85	1 1	1 70-130	rass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene			%	110		70-130	Pass	
Phenanthrene			%	84		70-130	Pass	
Pyrene			%	101		70-130	Pass	
LCS - % Recovery						•		
Metals M8 (NZ MfE)								
Arsenic			%	93		80-120	Pass	
Cadmium			%	96		80-120	Pass	
Chromium			%	106		80-120	Pass	
Copper			%	109		80-120	Pass	
Lead			%	103		80-120	Pass	
Mercury			%	110		80-120	Pass	
Nickel			%	109		80-120	Pass	
Zinc			%	110		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Petroleum Hydrocarbons (NZ	2 MfE 1999)			Result 1				
TPH-SG C7-C36 (Total)	K22-Fe39587	NCP	%	96		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	s (NZ MfE)			Result 1				
Benzo(g.h.i)perylene	K22-Fe39587	NCP	%	125		70-130	Pass	
Dibenz(a.h)anthracene	K22-Fe39587	NCP	%	113		70-130	Pass	
Fluoranthene	K22-Fe39587	NCP	%	123		70-130	Pass	
Indeno(1.2.3-cd)pyrene	K22-Fe39587	NCP	%	103		70-130	Pass	
Pyrene	K22-Fe39587	NCP	%	120		70-130	Pass	
Spike - % Recovery								
Metals M8 (NZ MfE)				Result 1				
Arsenic	K22-Fe36184	NCP	%	89		75-125	Pass	
Cadmium	K22-Fe36184	NCP	%	93		75-125	Pass	
Chromium	K22-Fe36184	NCP	%	100		75-125	Pass	
Copper	K22-Fe36184	NCP	%	95		75-125	Pass	
Lead	K22-Fe36184	NCP	%	105		75-125	Pass	
Mercury	K22-Fe36184	NCP	%	108		75-125	Pass	
Nickel	K22-Fe36184	NCP	%	92		75-125	Pass	
Zinc	K22-Fe36184	NCP	%	99		75-125	Pass	
Spike - % Recovery					•	•		
Total Petroleum Hydrocarbons (NZ	Z MfE 1999)			Result 1				
TPH-SG C7-C36 (Total)	K22-Fe39595	CP	%	104		70-130	Pass	
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons	s (NZ MfE)			Result 1				
Acenaphthene	K22-Fe39595	CP	%	125		70-130	Pass	
Acenaphthylene	K22-Fe39595	CP	%	124		70-130	Pass	
Anthracene	K22-Fe39595	CP	%	119		70-130	Pass	
Benz(a)anthracene	K22-Fe39595	CP	%	109		70-130	Pass	
Benzo(a)pyrene	K22-Fe39595	CP	%	98		70-130	Pass	
Benzo(b&j)fluoranthene	K22-Fe39595	CP	%	116		70-130	Pass	
Benzo(k)fluoranthene	K22-Fe39595	CP	%	122		70-130	Pass	
Chrysene	K22-Fe39595	CP	%	129		70-130	Pass	
Fluorene	K22-Fe39595	CP	%	104		70-130	Pass	
Naphthalene	K22-Fe39595	CP	%	126		70-130	Pass	
Phenanthrene	K22-Fe39595	CP	%	102		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Petroleum Hydrocarbons (NZ	MfE 1999)			Result 1	Result 2	RPD			
TPH-SG C7-C9	K22-Fe39594	CP	mg/kg	< 5	< 5	<1	30%	Pass	
TPH-SG C10-C14	K22-Fe39594	CP	mg/kg	< 10	< 10	<1	30%	Pass	
TPH-SG C15-C36	K22-Fe39594	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TPH-SG C7-C36 (Total)	K22-Fe39594	CP	mg/kg	< 35	< 35	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbons	s (NZ MfE)			Result 1	Result 2	RPD			
Acenaphthene	K22-Fe39594	CP	mg/kg	0.07	0.06	8.0	30%	Pass	
Acenaphthylene	K22-Fe39594	CP	mg/kg	0.42	0.35	18	30%	Pass	
Anthracene	K22-Fe39594	CP	mg/kg	0.73	0.67	8.0	30%	Pass	
Benz(a)anthracene	K22-Fe39594	CP	mg/kg	6.0	5.4	11	30%	Pass	
Benzo(a)pyrene	K22-Fe39594	CP	mg/kg	11	9.0	19	30%	Pass	
Benzo(b&j)fluoranthene	K22-Fe39594	CP	mg/kg	5.6	5.6	<1	30%	Pass	
Benzo(g.h.i)perylene	K22-Fe39594	CP	mg/kg	2.1	1.7	20	30%	Pass	
Benzo(k)fluoranthene	K22-Fe39594	CP	mg/kg	5.9	4.8	20	30%	Pass	
Chrysene	K22-Fe39594	CP	mg/kg	6.2	5.3	16	30%	Pass	
Dibenz(a.h)anthracene	K22-Fe39594	СР	mg/kg	0.80	0.64	22	30%	Pass	
Fluoranthene	K22-Fe39594	CP	mg/kg	12	11	8.0	30%	Pass	
Fluorene	K22-Fe39594	CP	mg/kg	0.22	0.20	14	30%	Pass	
Indeno(1.2.3-cd)pyrene	K22-Fe39594	CP	mg/kg	2.2	1.8	17	30%	Pass	
Naphthalene	K22-Fe39594	CP	mg/kg	0.2	0.2	11	30%	Pass	
Phenanthrene	K22-Fe39594	CP	mg/kg	5.3	4.5	16	30%	Pass	
Pyrene	K22-Fe39594	CP	mg/kg	14	11	16	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
% Moisture	K22-Fe39594	CP	%	15	12	24	30%	Pass	
Duplicate									
Metals M8 (NZ MfE)				Result 1	Result 2	RPD			
Arsenic	K22-Fe39596	CP	mg/kg	12	12	2.0	30%	Pass	
Cadmium	K22-Fe39596	CP	mg/kg	0.34	0.37	7.0	30%	Pass	
Chromium	K22-Fe39596	CP	mg/kg	47	47	<1	30%	Pass	
Copper	K22-Fe39596	СР	mg/kg	57	57	<1	30%	Pass	
Lead	K22-Fe39596	СР	mg/kg	170	180	1.0	30%	Pass	
Mercury	K22-Fe39596	СР	mg/kg	0.15	0.17	12	30%	Pass	
Nickel	K22-Fe39596	CP	mg/kg	67	67	<1	30%	Pass	
Zinc	K22-Fe39596	СР	mg/kg	200	200	1.0	30%	Pass	

Comments

Eurofins | Environment Testing accreditation number 1261, site 18217 is currently in progress of a controlled transition to a new custom built location at 179 Magowar Road, Girraween, NSW 2145. All results on this report denoted as being performed by Eurofins | Environment Testing Unit F3, Building F, 16 Mars road, Lane Cove West, NSW 2066, corporate site 18217, will have been performed on either Lane Cove or new Girraween site

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs

Authorised by:

Karishma Patel	Analytical Services Manager
Michael Ritchie	Senior Analyst-Organic (NZN)
Shasti Ramachandran	Senior Analyst-Metal (NZN)

J. D.

Michael Ritchie Head of Semi Volatiles (Key Technical Personnel)

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates IANZ accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Soil & Rock Consultants Level 1, 131 Lincoln Rd Henderson Auckland NEW ZEALAND

Garry Cepe

Attention:

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Report	864825-AID
Project Name	
Project ID	220086
Received Date	Feb 18, 2022
Date Reported	Feb 25, 2022
Methodology:	
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of A 3964 and hence IANZ Accreditation does not cover the performance of this service (non-IANZ results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01% " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Project Name	
Project ID	220086
Date Sampled	Feb 18, 2022
Report	864825-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
SS1	22-Fe39594	Feb 18, 2022	Approximate Sample 673g Sample consisted of: Fine grained soil and rocks	Chrysotile asbestos detected in the form of loose fibre bundles. Approximate raw weight of asbestos containing material = 0.000040g* Total estimated asbestos content in the sample = 0.000040g* Total estimated asbestos concentration = 0.0000059% w/w* No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS3	22-Fe39596	Feb 18, 2022	Approximate Sample 532g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS4	22-Fe39597	Feb 18, 2022	Approximate Sample 581g Sample consisted of: Fine grained soil and rocks	Chrysotile asbestos detected in the form of loose fibre bundles. Approximate raw weight of asbestos containing material = 0.0041g* Total estimated asbestos content in the sample = 0.0037g* Total estimated asbestos concentration = 0.00064% w/w* No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
SS5	22-Fe39598	Feb 18, 2022	Approximate Sample 540g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedAucklandFeb 24, 2022

Holding Time 22 Indefinite

					Eurofins Environme	ent Te	sting I	NZ Lin	nited	Eurofins Environment	Testing Australia Pty Lto	i		Eurofins ARL Pty Ltd
NZBN: 9429046024954									ABN: 50 005 085 521	ABN: 91 05 0159 898				
web: wy email: E	ww.eurofins.com.au	com	ironment	Testing	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	C 43 R I P I	Christch 3 Detroi collestor hone : (ANZ # 1	urch t Drive , Chris)800 85 290	stchurch 767 56 450	Melbourne 6 Monterey Road 5 Dandenong South VIC 3175 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254	Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	Brisbane 1/21 Smallwood Place Murarie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448 NATA # 1261 Site # 25079	Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 6253 4444 NATA # 2377 Site # 2370
Cor Ade	mpany Name: dress:	Soil & Rock Level 1, 131 Auckland NEW ZEALA	Consultants Lincoln Rd H	Henderson			O R Pl Fa	rder eport hone ax:	No.: t #: :	864825 0011 64 9 835 1740 0011 64 9 835 1847		Received: Due: Priority: Contact Name:	Feb 18, 2022 3:30 F Feb 25, 2022 5 Day Garry Cepe	M
Pro Pro	ject Name: ject ID:	220086									E	urofins Analytical Se	rvices Manager : Kari	shma Patel
		Sa	mple Detail			Moisture Set	Metals M8 (NZ MfE)	Eurofins Suite B4B-NZ: TPH, PAH (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)					
Auck	and Laborator	y - IANZ# 1327				х	Х	х	х					
Chris	stchurch Labora	atory - IANZ# 1	290											
Exte	rnal Laboratory													
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	SS1	Feb 18, 2022		Soil	K22-Fe39594	Х		Х	х					
2	SS1-1	Feb 18, 2022		Soil	K22-Fe39595	Х	Х	Х						
3	SS3	Feb 18, 2022		Soil	K22-Fe39596	Х		Х	Х					
4	SS4	Feb 18, 2022		Soil	K22-Fe39597	Х		Х	х					
5	SS5	Feb 18, 2022		Soil	K22-Fe39598	х		Х	х					
Test	Counts					5	1	5	4					

Internal Quality Control Review and Glossary General

- 1
- 2 3
- 4. 5.
- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. Samples were analysed on an 'as received' basis. Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results. Information identified on this report with the colour **orange** indicates sections of the report not covered by the laboratory's scope of NATA accreditation. This report replaces any interim results previously issued.
- 6

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001). If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units % w/w: F/fld F/mL g, kg g/kg L, mL L/min min	Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) Airborne fibre filter loading as Fibres (N) per Fields counted (n) Airborne fibre reported concentration as Fibres per millilitie of air drawn over the sampler membrane (C) Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m) Concentration in grams per kilogram Volume, e.g. of air as measured in AFM (V = r x t) Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r) Time (t), e.g. of air sample collection period
Calculations	
Airborne Fibre Concentration:	$C = \left(\frac{A}{a}\right) \times \left(\frac{N}{n}\right) \times \left(\frac{1}{r}\right) = K \times \left(\frac{N}{n}\right) \times \left(\frac{1}{v}\right)$
Asbestos Content (as asbestos):	$\% w/w = \frac{(m \times P_A)}{M}$
Weighted Average (of asbestos):	$\mathscr{H}_{WA} = \sum \frac{(m \times P_A)_X}{x}$
Terms %asbestos	Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P _A).
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.
AF	Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
AFM	Airborne Fibre Monitoring, e.g. by the MFM.
Amosite	Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.
AS	Australian Standard.
Asbestos Content (as asbestos)	I otal % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).
Chrysotile	Chrysolie Aspestos Defected. Chrysolie may also refer to Fibrous Serpentine or White Aspestos. Identified in accordance with AS 4964-2004.
	Grain di Cusiday. Grazina di Ashartan Datatadi. Grazidalita may alaa rafarta Eitarun Dishadkita a Diya Ashartan. Idantifad in casandanan with AC 4064 2004.
	Crocidolite Aspesios Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Aspesios. Identified in accordance with AS 4964-2004.
Dry DS	Sample is uned by nearing prior to analysis.
D3	Dispersion Staining. Technique required nor Onequivocal identification or asbestos index by PLM.
FA	Fiblow the handling, and any material that was previously on-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.
Fibre Count	Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre ID	Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
HSG248	UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).
HSG264	UK HSE HSG264, Asbestos: The Survey Guide (2012).
ISO (also ISO/IEC)	International Organization for Standardization / International Electrotechnical Commission.
K Factor	Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).
LOR	Limit of Reporting.
MFM (also NOHSC:3003)	Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
NEPM (also ASC NEPM)	National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic	Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
PCM	Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
PLM	Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
SMF	Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
SRA	Sample Receipt Advice.
	Analytical procedure used to detect the presence of respirable tipres (particulary aspessos) in a given sample matrix.
UN HOE HOG	United Kingdom, meanin and Safety Executive, Health and Safety Guidance, publication.
Um	May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
WA DOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Weighted Average	Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Laura Liu

Senior Analyst-Asbestos

Authorised by:

Katyana Gausel

Senior Analyst-Asbestos (Key Technical Personnel) (NSW)

Katyana Gausel Senior Analyst-Asbestos (Key Technical Personnel)

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates ISO/IEC 17025:2017 accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

E S	AIN OF CUSTOE	Y RECORD	A E	uckland O	1gt 35.01 ffice E: Se	torke Road, Penrose, AUI 0 856450 (free dial) ttCarrol@eurofins.co.nz;	CKLAND 1061, New 2 OnurMehmet@eurol	Zealand fins.com.au	Urofins Wellingto	mgt Zealand 2010 Office P: 0800 85 2010 05 2010 85 200tCa	ud, Seavlew, Lower Hutt, WE 6450 (free dial) Toli@eurofins.co.nz ; OnurM	LLING ION 5011, New ehmet@eurofins.com.au	Eurofins mgt Melbourne Lab	2 Kingston Town Clos P : 0800 856450 (free E : ScottCarroll@euro	se, Oakleigh, VIC 316 s diat) bfins.co.nz ; OnurMeh	6, Australia met@eurofins.com.au
Company	Soil & Rock Consultan	ts	Purchase	Order					Project Manager				Project Name			
Address			Eurofins	mgt N€					Project Ne	220086			Electronic Results Format			
														- -		
Contact Name	CC		"Fikered")										Email for Results ga	rry.cepe@so	<u>ilandrock.</u>	co.nz
Contact Phone Na			ly "Total" or	Ol sotsed	1								Time Assessed	DAY* D	2 DAY*	3 DAY*
Special Direction	CoC 1 of 1		alysis sisese speci	J2A + (8M)	HAG +	10							Requirements	DAY (Std.)	Other (* Surcharges apply)
	-		snA peteeupen e) eleteM	H9T:SN								Containers		Method of S	Shipment
Relinquished by	00		ne talaite ar	үлвэН :	N-848-N										Courier (#	(
(Signature)			ədW :ətoN)	ZN-A1S								1/	silic lastic er Glass ial		land Delivered	
(Time / Date)		<u>18 / 02 / 2022</u>		8									3619 J1 9 Jm008 9 Jm821 9 dmA Jm00 vJm04 VJm04 Jm83	Jar Jar	ostal	
Ne	Client Sample ID	Date	Matrix										5	Samp	le Comments / D	IG Hazard Warning
7-	SS1	9/11/2021	soil	×	×								×	×		
2	SS1-1	9/11/2021	soil		×									×		
m	SS3	10/11/2021	soil	×	×				1				×	×		
4	SS4	10/11/2021	soil	×	×								×	×		
Q	SS5	10/11/2021	soil	×	×								×	×		
υ							Dati	e/Time:	28 2 22	3.80 PY	s					
7				1 CB:			Terr	ied:	(Yes) N	13.5						
œ						P	Сол	ection:		101						
σ							Fina	I Temp:								
10					2 • • 1											
E																
12																
Laboratory Use Only	Received By K	fla Alan			AUCK WEL	L Melb		late	-1-1-	Time		Signature	Hale	Ter	nperature	
	Received By			1	AUCK WEL	L MELB		ate	-1-1-	Time]	Signature		Re	eport Ne	364825
						SUDINISSION C	samples to the I	aboratory will p	e deemed as acceptan	ce of Eurotins mgt s	andard Terms and Con	ditions unless agreed	otherwise. A copy of Eurofins m	gt Standard Terms and	d Conditions is av	vailable on request.

QS3105_R0 Modified by: T Lakeland Approved by: 0 Mehmet Approved on: 14 May 2015

 Eurofins | mgt
 35 O'Rorke Road, Penrose, AUCKLAND 1061, New Zealand

 Auckland Office
 9: 0800 856450 (free dial)

 E : ScottCarroll@eurofins.co.nz ; OnurMehmet@eurofins.com.au

 35 O'Rorke Road, Penrose, AUCKLAND 1061, New Zealand

85 Port Road, Seaview, Lower Hutt, WELLINGTON 5011, New Eurofins | mgt Zealand

Wellington Office P : 0800 856450 (free dial) E : ScottCarroll@eurofins.co.nz ; OnurMehmet@eurofins.com.au

(Company	Soil & Rock Con	sultants		Purcha	se Order						Project N	lanager				Pro	ject Nar	ne					
	A data a s				Eurofir Quo	ns∣mgt ote №						Proje	ct №	220086			Electr	ronic Re Format	sults					
Со	Address	GC			Filtered")												Ema	il for Res	sults	ga	rry.ce	be@soilandr	ock.co.nz	2
Cont	act Phone №				iis sase specify "Total" or)) + Asbestos ID	HA	/ 8)									Tu Rec	rn Arour quiremer	ıd nts	☐ 1 ✓ 5	DAY* DAY (Std.	2 DAY*	3 [* Surch	DAY* arges apply)
Spe	cial Direction	CoC 1 of 1			Analys requested, pl	1etals (M8	Z:TPH + F	, Metals (N											Conta	liners		Met	nod of Shipmer	nt
Reli	nquished by	GC			are metals are	: Heavy M	B4B-N	Heavy														Courier (#)
(8	Signature)				(Note: Whe	B21A-NZ											lastic	- Plastic	nber Glass	ILvial	nber Glass ar	Hand Deli	vered	
(Ti	me / Date)	:	<u> 18 </u> /	02 / 2022													11	500ml 125ml	200mL Ar	40m	125mL Ar	Postal		
Nº		Client Sample ID		Date	Matrix																	Sample Comm	ents / DG Haz	ard Warning
1		SS1		18/02/2022	soil	X	X											x			x			
2		SS1-1		18/02/2022	soil		X	X													x			
3		SS3		18/02/2022	soil	X	X											x			x			
4		SS4		18/02/2022	soil	X	X											x			x			
5		SS5		18/02/2022	soil	×	X											x			x			
6																								
7																								
8																								
9																								
10																								
11																								
12																								
		Received By					AUCK	WELL	MELB	Da	ite	/	_/	Time		 Signature						Temperatu	e	
Lab	oratory Use On	Received By					AUCK	WELL	MELB	 Da	ite	/	_/	Time	:	 Signature						Report №		

\square	Eurofins	mgt
	Melbourn	e Lak

2 Kingston Town Close, Oakleigh, VIC 3166, Australia P : 0800 856450 (free dial)

b E : ScottCarroll@eurofins.co.nz ; OnurMehmet@eurofins.com.au

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Soil & Rock Consultants Level 1, 131 Lincoln Rd Henderson Auckland NEW ZEALAND

Attention:
Report
Project name
Project ID
Received Date

1006260-S 220086 Jul 07, 2023

Garry Cepe

			1			
Client Sample ID			MB01-1	MB01-2	MB01-3	MB01-4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0016754	K23-JI0016755	K23-JI0016756	K23-JI0016757
Date Sampled			Jul 04, 2023	Jul 04, 2023	Jul 04, 2023	Jul 04, 2023
Test/Reference	LOR	Unit				
Total Petroleum Hydrocarbons (NZ MfE 1999)						
TPH-SG C7-C9	5	mg/kg	< 5	< 5	< 5	< 5
TPH-SG C10-C14	10	mg/kg	< 10	< 10	< 10	< 10
TPH-SG C15-C36	20	mg/kg	140	110	33	< 20
TPH-SG C7-C36 (Total)	35	mg/kg	140	110	< 35	< 35
Polycyclic Aromatic Hydrocarbons (NZ MfE)						
Comments			G01			
Acenaphthene	0.03	mg/kg	< 1.5	0.84	< 0.03	< 0.03
Acenaphthylene	0.03	mg/kg	< 1.5	0.72	< 0.03	< 0.03
Anthracene	0.03	mg/kg	< 1.5	0.44	0.04	< 0.03
Benz(a)anthracene	0.03	mg/kg	< 1.5	0.48	0.07	< 0.03
Benzo(a)pyrene	0.03	mg/kg	< 1.5	0.28	0.04	< 0.03
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	< 1.5	0.99	0.06	< 0.03
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	1.8	0.99	0.08	0.04
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	3.8	0.99	0.09	0.08
Benzo(b&j)fluoranthene ^{N07}	0.03	mg/kg	< 1.5	0.25	< 0.03	< 0.03
Benzo(g.h.i)perylene	0.03	mg/kg	< 1.5	0.60	0.04	< 0.03
Benzo(k)fluoranthene	0.03	mg/kg	< 1.5	0.40	0.04	< 0.03
Chrysene	0.03	mg/kg	< 1.5	0.81	0.11	< 0.03
Dibenz(a.h)anthracene	0.03	mg/kg	< 1.5	0.53	< 0.03	< 0.03
Fluoranthene	0.03	mg/kg	< 1.5	0.65	0.28	< 0.03
Fluorene	0.03	mg/kg	< 1.5	0.64	< 0.03	< 0.03
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	< 1.5	0.48	0.04	< 0.03
Naphthalene	0.1	mg/kg	< 1.5	0.8	< 0.1	< 0.1
Phenanthrene	0.03	mg/kg	< 1.5	0.68	0.33	< 0.03
Pyrene	0.03	mg/kg	< 1.5	0.77	0.28	< 0.03
Total PAH*	0.1	mg/kg	< 1.5	9.4	1.3	< 0.1
p-Terphenyl-d14 (surr.)	1	%	INT	59	56	55
2-Fluorobiphenyl (surr.)	1	%	50	63	56	65
Metals M8 (NZ MfE)						
Arsenic	0.1	mg/kg	3.3	3.3	1.7	1.0
Cadmium	0.01	mg/kg	0.11	< 0.01	0.11	< 0.01
Chromium	0.1	mg/kg	39	17	13	12
Copper	0.1	mg/kg	57	2.9	4.2	3.9
Lead	0.1	mg/kg	32	7.3	6.0	3.2
Mercury	0.01	mg/kg	0.08	0.11	0.15	0.07

Client Sample ID Sample Matrix			MB01-1 Soil	MB01-2 Soil	MB01-3 Soil	MB01-4 Soil
Eurofins Sample No.			K23-JI0016754	K23-JI0016755	K23-JI0016756	K23-JI0016757
Date Sampled			Jul 04, 2023	Jul 04, 2023	Jul 04, 2023	Jul 04, 2023
Test/Reference	LOR	Unit				
Metals M8 (NZ MfE)						
Nickel	0.1	mg/kg	110	5.5	5.4	1.1
Zinc	5	mg/kg	87	6.9	5.5	< 5
Sample Properties						
% Moisture	1	%	14	19	28	25

Client Sample ID			MB02-2	MB02-3	MB02-4	MB03-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0016758	K23-JI0016759	K23-JI0016760	K23-JI0016761
Date Sampled			Jul 03, 2023	Jul 03, 2023	Jul 03, 2023	Jul 05, 2023
Test/Reference	LOR	Unit				
Total Petroleum Hydrocarbons (NZ MfE 1999)						
TPH-SG C7-C9	5	mg/kg	< 5	< 5	< 5	< 5
TPH-SG C10-C14	10	mg/kg	< 10	< 10	< 10	< 10
TPH-SG C15-C36	20	mg/kg	150	69	74	140
TPH-SG C7-C36 (Total)	35	mg/kg	150	76	79	140
Polycyclic Aromatic Hydrocarbons (NZ MfE)						
Comments			G01			G01
Acenaphthene	0.03	mg/kg	< 0.3	< 0.03	< 0.03	< 0.3
Acenaphthylene	0.03	mg/kg	< 0.3	< 0.03	< 0.03	< 0.3
Anthracene	0.03	mg/kg	< 0.3	< 0.03	< 0.03	< 0.3
Benz(a)anthracene	0.03	mg/kg	0.94	< 0.03	< 0.03	1.0
Benzo(a)pyrene	0.03	mg/kg	< 0.3	< 0.03	0.03	< 0.3
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	< 0.3	< 0.03	0.03	< 0.3
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	0.5	0.04	0.05	0.5
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	0.8	0.08	0.08	0.8
Benzo(b&j)fluoranthene ^{N07}	0.03	mg/kg	< 0.3	< 0.03	< 0.03	< 0.3
Benzo(g.h.i)perylene	0.03	mg/kg	< 0.3	< 0.03	< 0.03	< 0.3
Benzo(k)fluoranthene	0.03	mg/kg	< 0.3	< 0.03	< 0.03	< 0.3
Chrysene	0.03	mg/kg	0.56	< 0.03	< 0.03	0.64
Dibenz(a.h)anthracene	0.03	mg/kg	< 0.3	< 0.03	< 0.03	< 0.3
Fluoranthene	0.03	mg/kg	0.57	< 0.03	< 0.03	0.69
Fluorene	0.03	mg/kg	< 0.3	< 0.03	< 0.03	< 0.3
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	< 0.3	< 0.03	< 0.03	< 0.3
Naphthalene	0.1	mg/kg	< 0.3	< 0.1	< 0.1	< 0.3
Phenanthrene	0.03	mg/kg	< 0.3	< 0.03	< 0.03	0.36
Pyrene	0.03	mg/kg	0.71	< 0.03	< 0.03	0.95
Total PAH*	0.1	mg/kg	2.8	< 0.1	< 0.1	3.6
p-Terphenyl-d14 (surr.)	1	%	INT	69	INT	INT
2-Fluorobiphenyl (surr.)	1	%	62	74	70	70
Metals M8 (NZ MfE)						
Arsenic	0.1	mg/kg	12	1.2	8.8	6.6
Cadmium	0.01	mg/kg	0.01	0.02	0.06	0.19
Chromium	0.1	mg/kg	23	24	25	28
Copper	0.1	mg/kg	8.7	5.6	16	31
Lead	0.1	mg/kg	19	5.2	5.1	31
Mercury	0.01	mg/kg	0.18	0.06	0.08	0.07
Nickel	0.1	mg/kg	10	3.8	2.7	34
Zinc	5	mg/kg	15	16	17	110

Client Sample ID			MB02-2	MB02-3	MB02-4	MB03-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			K23-JI0016758	K23-JI0016759	K23-JI0016760	K23-JI0016761
Date Sampled			Jul 03, 2023	Jul 03, 2023	Jul 03, 2023	Jul 05, 2023
Test/Reference	LOR	Unit				
Sample Properties						
% Moisture	1	%	32	40	34	17

Client Sample ID			MB03-2	MB03-3	MB03-4
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			K23-JI0016762	K23-JI0016763	K23-JI0016764
Date Sampled			Jul 05, 2023	Jul 05, 2023	Jul 05, 2023
Test/Reference	LOR	Unit			
Total Petroleum Hydrocarbons (NZ MfE 1999)					
TPH-SG C7-C9	5	mg/kg	< 5	< 5	< 5
TPH-SG C10-C14	10	mg/kg	< 10	< 10	< 10
TPH-SG C15-C36	20	mg/kg	77	< 20	< 20
TPH-SG C7-C36 (Total)	35	mg/kg	77	< 35	< 35
Polycyclic Aromatic Hydrocarbons (NZ MfE)					
Acenaphthene	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Acenaphthylene	0.03	mg/kg	0.04	< 0.03	< 0.03
Anthracene	0.03	mg/kg	0.07	< 0.03	< 0.03
Benz(a)anthracene	0.03	mg/kg	0.14	< 0.03	< 0.03
Benzo(a)pyrene	0.03	mg/kg	0.12	< 0.03	0.03
Benzo(a)pyrene TEQ (lower bound)*	0.03	mg/kg	0.24	< 0.03	0.03
Benzo(a)pyrene TEQ (medium bound)*	0.03	mg/kg	0.24	0.04	0.05
Benzo(a)pyrene TEQ (upper bound)*	0.03	mg/kg	0.24	0.08	0.08
Benzo(b&j)fluoranthene ^{N07}	0.03	mg/kg	0.06	< 0.03	< 0.03
Benzo(g.h.i)perylene	0.03	mg/kg	0.13	< 0.03	< 0.03
Benzo(k)fluoranthene	0.03	mg/kg	0.07	< 0.03	< 0.03
Chrysene	0.03	mg/kg	0.25	< 0.03	< 0.03
Dibenz(a.h)anthracene	0.03	mg/kg	0.07	< 0.03	< 0.03
Fluoranthene	0.03	mg/kg	0.62	< 0.03	< 0.03
Fluorene	0.03	mg/kg	< 0.03	< 0.03	< 0.03
Indeno(1.2.3-cd)pyrene	0.03	mg/kg	0.14	< 0.03	< 0.03
Naphthalene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Phenanthrene	0.03	mg/kg	0.49	< 0.03	< 0.03
Pyrene	0.03	mg/kg	0.62	< 0.03	< 0.03
Total PAH*	0.1	mg/kg	2.8	< 0.1	< 0.1
p-Terphenyl-d14 (surr.)	1	%	73	60	82
2-Fluorobiphenyl (surr.)	1	%	73	80	85
Metals M8 (NZ MfE)					
Arsenic	0.1	mg/kg	1.0	1.1	1.7
Cadmium	0.01	mg/kg	< 0.01	< 0.01	< 0.01
Chromium	0.1	mg/kg	21	28	24
Copper	0.1	mg/kg	4.1	5.8	7.5
Lead	0.1	mg/kg	6.2	5.1	5.2
Mercury	0.01	mg/kg	0.14	0.09	0.06
Nickel	0.1	mg/kg	6.3	3.2	3.3
Zinc	5	mg/kg	5.8	< 5	5.4
Sample Properties					
% Moisture	1	%	31	29	34

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Petroleum Hydrocarbons (NZ MfE 1999)	Auckland	Jul 12, 2023	14 Days
- Method: LTM-ORG-2010 TRH and BTEX in Soil and Water by GC FID and PT GCMS			
Polycyclic Aromatic Hydrocarbons (NZ MfE)	Auckland	Jul 12, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water by GC MSMS			
Metals M8 (NZ MfE)	Auckland	Jul 12, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
% Moisture	Auckland	Jul 10, 2023	14 Days
- Method: LTM-GEN-7080 Moisture Content in Soil by Gravimetry			

		fine	Eurofins Env NZBN: 9429046	r <mark>ironment Testing</mark> 024954	JNZLtd E	Eurofins E ABN: 50 005	nviron 085 521	ment	Testin	g Australia	a Pty Ltd				Eurofins ARL Pty Ltd ABN: 91 05 0159 898
web: w email: I	ww.eurofins.com.au	s.com	Auckland 35 O'Rorke Roa Penrose, Auckland 1061 Tel: +64 9 526 4 IANZ# 1327	Christchu d 43 Detroit Rolleston, Christchur 1551 Tel: +64 3 IANZ# 129	rch M Drive 6 ch 7675 \ 343 5201 T 0 N	Melbourne 6 Monterey R Dandenong S /IC 3175 Fel: +61 3 85 NATA# 1261	oad South 64 5000 Site# 12	G 1 G V T 254 N	Geelong 9/8 Lew Grovedal (IC 3216 (IC 3216 (IC 3216 (IC 3216 (IC 3216 (IC 3216) (IC 32	alan Street e 3 8564 5000 261 Site# 254	Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 403 NATA# 1261 Site# 18:	Canberra Unit 1,2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 217 NATA# 1261 Site# 254	Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 466 NATA# 1261 Site# 207	Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 94 Site# 25079 & 25289	Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370
Co Ad	mpany Name: dress:	Soil & Rock Level 1, 131 Auckland NEW ZEAL/	Consultants Lincoln Rd	Henderson				O R Pl Fa	rder N eport hone: ax:	lo.: #:	220086 1006260 0011 64 9 835 174 0011 64 9 835 184	0 7	Received: Due: Priority: Contact Nam	Jul 7, 2023 4: Jul 17, 2023 6 Day e: Garry Cepe	12 PM
Pro Pro	oject Name: oject ID:	220086											Eurofins Analytic	al Services Manager :	Katyana Gausel
		Sa	ample Detail				Moisture Set	Eurofins Suite B4B-NZ: TPH, PAH (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)						
Auc	kland Laborato	y - IANZ# 1327					х	Х	х						
Chri	stchurch Labor	atory - IANZ# 1	290						Х	-					
Exte	rnal Laboratory	/ 	1		1					-					
No	Sample ID	Sample Date	Sampling Time	Matrix	LAI	BID				-					
1	MB01-1	Jul 04, 2023		Soil	K23-JI00	016754	Х	Х	Х						
2	MB01-2	Jul 04, 2023		Soil	K23-JI00	016755	X	X	X						
3	MB01-3	Jul 04, 2023		Soil	K23-JI00	016756	X	X	X	-					
4	MB01-4	Jul 04, 2023		Soll	K23-JI00	J16757	X	X							
5	MB02-2	Jul 03, 2023		Soil	K23- 1100	16750	×	X	x	-					
7	MB02-4	Jul 03, 2023		Soil	K23-JI00)16760	X	X	x	1					
8	MB03-1	Jul 05, 2023		Soil	K23-JI00)16761	X	X	x	1					
9	MB03-2	Jul 05, 2023		Soil	K23-JI00	016762	X	X	X	1					
10	MB03-3	Jul 05, 2023		Soil	K23-JI00	016763	х	Х	х						
11	MB03-4	Jul 05, 2023		Soil	K23-JI00	016764	х	Х	Х	1					
Test	Counts		•			-	11	11	11	1					
										1					

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA. If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	μg/L: micrograms per litre
ppm: parts per million	ppb: parts per billion	%: Percentage
org/100 mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100 mL: Most Probable Number of organisms per 100 millilitres
CFU: Colony forming unit		

Terms

АРНА	American Public Health Association
coc	Chain of Custody
СР	Client Parent - QC was performed on samples pertaining to this report
CRM	Certified Reference Material (ISO17034) - reported as percent recovery.
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
LOR	Limit of Reporting.
LCS	Laboratory Control Sample - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
SRA	Sample Receipt Advice
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
твто	Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.
TCLP	Toxicity Characteristic Leaching Procedure
TEQ	Toxic Equivalency Quotient or Total Equivalence
QSM	US Department of Defense Quality Systems Manual Version 5.4
US EPA	United States Environmental Protection Agency
WA DWER	Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Petroleum Hydrocarbons (NZ MfE 1999)					
TPH-SG C7-C9	mg/kg	< 5	5	Pass	
TPH-SG C10-C14	mg/kg	< 10	10	Pass	
TPH-SG C15-C36	mg/kg	< 20	20	Pass	
TPH-SG C7-C36 (Total)	mg/kg	< 35	35	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons (NZ MfE)					
Acenaphthene	mg/kg	< 0.03	0.03	Pass	
Acenaphthylene	mg/kg	< 0.03	0.03	Pass	
Anthracene	mg/kg	< 0.03	0.03	Pass	
Benz(a)anthracene	mg/kg	< 0.03	0.03	Pass	
Benzo(a)pyrene	mg/kg	< 0.03	0.03	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.03	0.03	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.03	0.03	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.03	0.03	Pass	
Chrysene	mg/kg	< 0.03	0.03	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.03	0.03	Pass	
Fluoranthene	ma/ka	< 0.03	0.03	Pass	
Fluorene	ma/ka	< 0.03	0.03	Pass	
Indeno(1.2.3-cd)pyrene	ma/ka	< 0.03	0.03	Pass	
Naphthalene	ma/ka	< 0.1	0.1	Pass	
Phenanthrene	ma/ka	< 0.03	0.03	Pass	
Pvrene	ma/ka	< 0.03	0.03	Pass	
Method Blank					
Metals M8 (NZ MfE)					
Arsenic	ma/ka	< 0.1	0.1	Pass	
Cadmium	ma/ka	< 0.01	0.01	Pass	
Chromium	ma/ka	< 0.1	0.1	Pass	
Lead	ma/ka	< 0.1	0.1	Pass	
Mercury	ma/ka	< 0.01	0.01	Pass	
Nickel	ma/ka	< 0.1	0.1	Pass	
Zinc	ma/ka	< 5	5	Pass	
LCS - % Recovery					
Total Petroleum Hydrocarbons (NZ MfE 1999)					
TPH-SG C7-C36 (Total)	%	108	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons (NZ MfE)					
Acenaphthene	%	80	70-130	Pass	
Acenaphthylene	%	126	70-130	Pass	
Anthracene	%	94	70-130	Pass	
Benz(a)anthracene	%	77	70-130	Pass	
Benzo(b&i)fluoranthene	%	116	70-130	Pass	
Benzo(g.h.i)perylene	%	96	70-130	Pass	
Benzo(k)fluoranthene	%	94	70-130	Pass	
Chrysene	%	78	70-130	Pass	
Dibenz(a.h)anthracene	%	92	70-130	Pass	
Fluoranthene	%	85	70-130	Pass	
Fluorene	%	86	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	74	70-130	Pass	
Naphthalene	%	77	70-130	Pass	
Phenanthrene	%	73	70-130	Pass	

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code	
Pyrene			%	97			70-130	Pass		
LCS - % Recovery										
Metals M8 (NZ MfE)										
Arsenic			%	109			80-120	Pass		
Cadmium			%	105			80-120	Pass		
Chromium		%	103			80-120	Pass			
Copper			%	103			80-120	Pass		
Lead			%	115			80-120	Pass		
Mercury			%	115			80-120	Pass		
Nickel			%	111			80-120	Pass		
Zinc			%	115			80-120	Pass		
Test	l ah Sample ID	QA	Unite	Result 1			Acceptance	Pass	Qualifying	
1631	Lab Sample ID	Source	Units	Result 1			Limits	Limits	Code	
Spike - % Recovery				1						
Total Petroleum Hydrocarbons (NZ	2 MfE 1999)			Result 1						
TPH-SG C7-C36 (Total)	K23-JI0006060	NCP	%	78			70-130	Pass		
Spike - % Recovery				1						
Polycyclic Aromatic Hydrocarbons	s (NZ MfE)			Result 1						
Acenaphthene	K23-JI0009440	NCP	%	79			70-130	Pass		
Acenaphthylene	K23-JI0009440	NCP	%	71			70-130	Pass		
Anthracene	K23-Jl0009440	NCP	%	71			70-130	Pass		
Benz(a)anthracene	K23-Jl0018377	NCP	%	81			70-130	Pass		
Benzo(g.h.i)perylene	K23-Jl0018377	NCP	%	85			70-130	Pass		
Benzo(k)fluoranthene	K23-Jl0009440	NCP	%	80			70-130	Pass		
Chrysene	K23-Jl0009440	NCP	%	78			70-130	Pass		
Dibenz(a.h)anthracene	K23-Jl0009440	NCP	%	76			70-130	Pass		
Fluoranthene	K23-Jl0018377	NCP	%	92			70-130	Pass		
Fluorene	K23-Jl0009440	NCP	%	86			70-130	Pass		
Naphthalene	K23-Jl0009440	NCP	%	76			70-130	Pass		
Phenanthrene	K23-Jl0009440	NCP	%	74			70-130	Pass		
Pyrene	K23-JI0018377	NCP	%	104			70-130	Pass		
Spike - % Recovery				i						
Metals M8 (NZ MfE)	I			Result 1						
Arsenic	K23-Jl0016755	CP	%	90			75-125	Pass		
Cadmium	K23-Jl0016755	CP	%	96			75-125	Pass		
Chromium	K23-Jl0016755	CP	%	111			75-125	Pass		
Copper	K23-Jl0016755	CP	%	107			75-125	Pass		
Lead	K23-Jl0016755	CP	%	102			75-125	Pass		
Mercury	K23-Jl0016755	CP	%	107			75-125	Pass		
Nickel	K23-Jl0016755	CP	%	101			75-125	Pass		
Zinc	K23-Jl0016755	CP	%	106			75-125	Pass		
Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying	
Dunlicate		Source					Linits	Linits	Coue	
Total Petroleum Hydrocarbons (NZ	/ MfE 1999)			Result 1	Result 2	PPD				
	K23- 110016754	CP	ma/ka			~1	30%	Pass		
	K23-JI0016754		mg/kg	< 10	< 10		30%	Pass		
TPH-SG C15-C36	K23-110016754		mg/kg	1/0	120	16	30%	Page		
TPH-SG C7-C36 (Total)	K23-110010754		ma/ka	140	120	16	30%	i ass Pace		
	123-310010734		iiig/Kg	140	120	10	30 /0	1 035		
Polycyclic Aromatic Hydrocarbon				Recult 1	Result 2	RDD				
		NCP	ma/ka				30%	Page		
	K23-110009430	NCP	mg/kg			~1	30%	Page		
Ronz(a)anthracona	K22 10000420		mg/kg	< 0.03	< 0.03	<u> </u>	20%	Pass		
	K23-JIUUU9438		mg/kg	0.15	0.10	0.1	30%	Pass		
Benzo(a)pyrene	K23-JI0009438	NCP	mg/kg	0.22	0.26	14	30%	Pass		

Duplicate										
Polycyclic Aromatic Hydrocarbons	s (NZ MfE)			Result 1	Result 2	RPD				
Benzo(b&j)fluoranthene	K23-JI0009438	NCP	mg/kg	0.40	0.48	18	30%	Pass		
Benzo(g.h.i)perylene	K23-JI0009438	NCP	mg/kg	0.19	0.23	24	30%	Pass		
Benzo(k)fluoranthene	K23-JI0009438	NCP	mg/kg	0.21	0.17	19	30%	Pass		
Chrysene	K23-JI0009438	NCP	mg/kg	0.36	0.38	4.3	30%	Pass		
Dibenz(a.h)anthracene	K23-JI0009438	NCP	mg/kg	0.10	0.10	10	30%	Pass		
Fluoranthene	K23-JI0009438	NCP	mg/kg	0.90	0.99	9.5	30%	Pass		
Fluorene	K23-JI0009438	NCP	mg/kg	0.06	0.06	5.2	30%	Pass		
Indeno(1.2.3-cd)pyrene	K23-JI0009438	NCP	mg/kg	0.16	0.21	27	30%	Pass		
Naphthalene	K23-JI0009438	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass		
Phenanthrene	K23-JI0009438	NCP	mg/kg	1.1	1.2	8.1	30%	Pass		
Pyrene	K23-JI0009438	NCP	mg/kg	0.90	0.98	9.3	30%	Pass		
Duplicate										
Metals M8 (NZ MfE)				Result 1	Result 2	RPD				
Arsenic	K23-JI0016754	CP	mg/kg	3.3	3.4	3.1	30%	Pass		
Cadmium	K23-JI0016754	CP	mg/kg	0.11	0.13	18	30%	Pass	Q15	
Chromium	K23-JI0016754	CP	mg/kg	39	43	11	30%	Pass		
Copper	K23-JI0016754	CP	mg/kg	57	54	6.6	30%	Pass		
Lead	K23-JI0016754	CP	mg/kg	32	59	59	30%	Fail	Q02	
Mercury	K23-JI0016754	CP	mg/kg	0.08	0.14	60	30%	Fail	Q02	
Nickel	K23-JI0016754	CP	mg/kg	110	100	4.2	30%	Pass		
Zinc	K23-JI0016754	CP	mg/kg	87	100	14	30%	Pass		
Duplicate										
Sample Properties				Result 1	Result 2	RPD				
% Moisture	K23-JI0016754	CP	%	14	15	12	30%	Pass		
Duplicate				1						
Total Petroleum Hydrocarbons (NZ	Z MfE 1999)			Result 1	Result 2	RPD				
TPH-SG C7-C9	K23-JI0016764	CP	mg/kg	< 5	< 5	<1	30%	Pass		
TPH-SG C10-C14	K23-JI0016764	CP	mg/kg	< 10	< 10	<1	30%	Pass		
TPH-SG C15-C36	K23-JI0016764	CP	mg/kg	< 20	< 20	<1	30%	Pass		
TPH-SG C7-C36 (Total)	K23-JI0016764	CP	mg/kg	< 35	< 35	<1	30%	Pass		
Duplicate				1						
Metals M8 (NZ MfE)				Result 1	Result 2	RPD				
Arsenic	K23-JI0016764	CP	mg/kg	1.7	2.2	25	30%	Pass		
Cadmium	K23-JI0016764	CP	mg/kg	< 0.01	0.08	180	30%	Fail	Q15	
Chromium	K23-JI0016764	CP	mg/kg	24	23	2.5	30%	Pass		
Copper	K23-JI0016764	CP	mg/kg	7.5	7.9	4.4	30%	Pass		
Lead	K23-JI0016764	CP	mg/kg	5.2	5.7	11	30%	Pass		
Mercury	K23-JI0016764	CP	mg/kg	0.06	0.06	12	30%	Pass		
Nickel	K23-JI0016764	CP	mg/kg	3.3	3.2	3.1	30%	Pass		
Zinc	K23-JI0016764	CP	mg/kg	5.4	10.0	60	30%	Fail	Q02	
Duplicate										
Sample Properties	1			Result 1	Result 2	RPD				
% Moisture	K23-JI0016764	CP	%	34	34	1.2	30%	Pass		

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code	Description
G01	The LORs have been raised due to matrix interference
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q02	The duplicate %RPD is outside the recommended acceptance criteria. Further analysis indicates sample heterogeneity as the cause
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Swati Oberoi	Analytical Services Manager
Raymond Siu	Senior Analyst-Metal
Raymond Siu	Senior Analyst-Organic
Sophie Bush	Senior Analyst-Asbestos

Ku

Raymond Siu Senior Instrument Chemist (Key Technical Personnel)

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates IANZ accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Certificate of Analysis

Environment Testing

Soil & Rock Consultants Level 1, 131 Lincoln Rd Henderson Auckland NEW ZEALAND

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Attention:	Garry Cepe		
Report	1006260-AID		
Project Name			
Project ID	220086		
Received Date	Jul 07, 2023		
Date Reported	Jul 17, 2023		
Methodology:			
Asbestos Fibre Identification	Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques. NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.		
Unknown Mineral Fibres	Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity. NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.		
Subsampling Soil Samples	The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a sub-sampling routine based on ISO 3082:2009(E) is employed. NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.		
Bonded asbestos- containing material (ACM)	The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004. NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.		
Limit of Reporting	The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w). The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence IANZ Accreditation does not cover the performance of this service (non-IANZ results shown with an asterisk). NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 % " and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.		

Project Name

 Project ID
 220086

 Date Sampled
 Jul 03, 2023 to Jul 05, 2023

 Report
 1006260-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
MB01-1	23-JI0016754	Jul 04, 2023	Approximate Sample 804g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
MB01-2	23-JI0016755	Jul 04, 2023	Approximate Sample 535g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
MB01-3	23-JI0016756	Jul 04, 2023	Approximate Sample 465g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
MB01-4	23-JI0016757	Jul 04, 2023	Approximate Sample 509g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
MB02-2	23-JI0016758	Jul 03, 2023	Approximate Sample 402g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
MB02-3	23-JI0016759	Jul 03, 2023	Approximate Sample 352g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
MB02-4	23-JI0016760	Jul 03, 2023	Approximate Sample 425g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
MB03-1	23-JI0016761	Jul 05, 2023	Approximate Sample 694g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
MB03-2	23-JI0016762	Jul 05, 2023	Approximate Sample 494g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
MB03-3	23-JI0016763	Jul 05, 2023	Approximate Sample 457g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
MB03-4	23-JI0016764	Jul 05, 2023	Approximate Sample 421g Sample consisted of: Fine grained soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description

Asbestos - LTM-ASB-8020

Testing SiteExtractedChristchurchJul 10, 2023

Holding Time Indefinite

Eurofins Environment Testing NZ Ltd Eurofi								i <mark>ins Environment Testing Australia Pty Ltd</mark> 50 005 085 521													
web: w email:	ww.eurofins.com.au	TINS	Auckland 35 O'Rorke Roa Penrose, Auckland 1061 Tel: +64 9 526 4 IANZ# 1327	ch I Prive 6 h 7675 V 43 5201 T	Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 NATA# 1261 Site# 1254			eelong 9/8 Lewa provedate IC 3216 el: +61 3 IATA# 12	alan Street 9 88564 5000 261 Site# 254	Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 840 03 NATA# 1261 Site# 1	Canberra Unit 1,2 Dacre Stro Mitchell ACT 2911 00 Tel: +61 2 6113 80 18217 NATA# 1261 Site#	reet 1 N 091 7 # 25466 N	Brisbane I/21 Smallwood Place Murarrie QLD 4172 Fel: +61 7 3902 4600 NATA# 1261 Site# 2079	Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261 4 Site# 25079 & 25289	ABN: 91 05 0159 898 Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370						
Company Name: Soil & Rock Consultants Address: Level 1, 131 Lincoln Rd Henderson Auckland NEW ZEALAND								O Ri Pi Fa	rder N eport hone: ax:	lo.: #:	220086 1006260 0011 64 9 835 17 0011 64 9 835 18	740 347		Received: Due: Priority: Contact Name	Jul 7, 2023 4: Jul 17, 2023 6 Day e: Garry Cepe	12 PM					
Project Name: Project ID: 220086													E	urofins Analytica	al Services Manager :	Katyana Gausel					
Sample Detail								Eurofins Suite B4B-NZ: TPH, PAH (NZ MfE)	Eurofins Suite B21A-NZ: Asbestos, Metals (As,Cd,Cr,Cu,Ni,Pb,Zn,Hg) (NZ MfE)												
Auc	kland Laborato	y - IANZ# 1327	,				Х	Х	Х												
Chri	stchurch Labor	atory - IANZ# 1	290						X												
External Laboratory					R ID																
		oumple bute	Time																		
1	MB01-1	Jul 04, 2023		Soil	K23-JI0	016754	Х	Х	Х												
2	MB01-2	Jul 04, 2023		Soil	K23-JI0	016755	X	X	X												
3	MB01-3	Jul 04, 2023		Soil	K23-JI0	016756	X	X	X												
4	MB01-4	Jul 04, 2023		Soil	K23-JI0	J16757	×	X	X												
5	MB02-2	Jul 03, 2023		Soil	K23-JI0	016750	×	×	×												
7	MB02-3	Jul 03, 2023		Soil	K23-110	16760	X	X	X												
8	MB02-4	Jul 05, 2023		Soil	K23-JI0	016761	X	X	x												
9	MB03-2	Jul 05, 2023		Soil	K23-JI0	016762	x	X	X												
10	MB03-3	Jul 05, 2023		Soil	K23-JI0	016763	X	Х	X												
11	MB03-4	Jul 05, 2023		Soil	K23-JI0	016764	х	Х	х												
Test	Counts						11	11	11												
100																					

Internal Quality Control Review and Glossary General

- 1. 2. 3.
- QC data may be available on request. All soil results are reported on a dry basis, unless otherwise stated. Samples were analysed on an 'as received' basis. Information identified on this report with the colour **blue** indicates data provided by customer that may have an impact on the results. This report replaces any interim results previously issued. 4. 5.

Holding Times Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units % w/w: F/fld F/mL g, kg g/kg L, mL L, mL L/min min	Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w) Airborne fibre filter loading as Fibres (N) per Fields counted (n) Airborne fibre reported concentration as Fibres per milliliter of air drawn over the sampler membrane (C) Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m) Concentration in grams per kilogram Volume, e.g. of air as measured in AFM (V = r x t) Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r) Time (t), e.g. of air sample collection period
Calculations	
Airborne Fibre Concentration:	$C = \left(\frac{n}{a}\right) \times \left(\frac{1}{r}\right) \times \left(\frac{1}{r}\right) = K \times \left(\frac{n}{r}\right) \times \left(\frac{1}{v}\right)$
Asbestos Content (as asbestos):	$\% w/w = \frac{(m \times P_A)}{M}$
Weighted Average (of asbestos):	$\mathscr{H}_{WA} = \sum \frac{(m \times P_A)_X}{x}$
Terms %asbestos	Estimated percentage of asbestos in a given matrix. May be derived from knowledge or experience of the material, informed by HSG264 Appendix 2, else assumed to be 15% in accordance with WA DOH Appendix 2 (P _A).
ACM	Asbestos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.
AF	Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable".
AFM	Airborne Fibre Monitoring, e.g. by the MFM.
Amosite	Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.
AS	Australian Standard.
Asbestos Content (as asbestos)	Total % w/w asbestos content in asbestos-containing finds in a soil sample (% w/w).
Chrysotile	Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.
COC	Chain of Custody.
Crocidolite	Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.
Dry	Sample is dried by heating prior to analysis.
DS	Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.
FA	Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.
Fibre Count	Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003
Fibre ID	Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos.
Friable	Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is outside of the laboratory's remit to assess degree of friability.
HSG248	UK HSE HSG248, Asbestos: The Analysts Guide, 2nd Edition (2021).
HSG264	UK HSE HSG264, Asbestos: The Survey Guide (2012).
ISO (also ISO/IEC)	International Organization for Standardization / International Electrotechnical Commission.
K Factor	Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece graticule area of the specific microscope used for the analysis (a).
LOR	Limit of Reporting.
MFM (also NOHSC:3003)	Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission, Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)].
NEPM (also ASC NEPM)	National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended).
Organic	Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004.
PCM	Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.
PLM	Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004.
Sampling	Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process.
SMF	Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004.
SRA	Sample Receipt Advice.
Trace Analysis	Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.
UK HSE HSG	United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.
UMF	Undentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004 May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos.
WA DOH	Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis
Weighted Average	Combined average % w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Kate Stuart

Senior Analyst-Asbestos

Authorised by:

Sophie Bush

Senior Analyst-Asbestos

Shiph

Sophie Bush Senior Analyst-Asbestos (Key Technical Personnel)

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates ISO/IEC 17025:2017 accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

CHAIN OF CUSTODY RECORD

2

3

4

5

6

8

10

11

Eurofins | mgt 35 O'Rorke Road, Penrose, AUCKLAND 1061, New Zealand P - 10800, 856450 (Irrae Atia) P : 0800 856450 (free dial) Auckland Office E : ScottCarroll@eurofins.co.nz ; OnurMehmet@eurofins.com.au

85 Port Road, Seaview, Lower Hutt, WELLINGTON 5011, New Eurofins | mgt Zealand

Wellington Office P : 0800 856450 (free dial) E : ScottCarroll@eurofins.co.nz ; OnurMehmet@eurofins.com.au

Eurofins | mgt 2 Kingston Town Close, Oakleigh, VIC 3166, Australia P: 0800 856450 (free dial) Melbourne Lab E : ScottCarroll@eurofins.com.au

Company Soil & Rock Consultants			Purcha	se Order							Project Manager							Project Name								
	Address		Eurofi Quo	ns∣mgt ote №							Project №	ect № 220086						Electronic Results Format								
	Address																									
С	ontact Name	GC			"Filtered")														E	nail fo	r Resu	ults	garr	<u>ry.cepe</u>	e@soilandroo	<u>:k.co.nz</u>
Cor	itact Phone №				cify "Total" or	sbestos II														Turn	Around] [1 DA	.Y*	2 DAY*	3 DAY*
Spe	ecial Direction	CoC 1 of 1			Analysis uested, please spe	als (M8) + A:	TPH + PAH													Requirements			5 DAY (Std.)		Other (of Shipment
Re	linguished by	GC			tals are req	avy Met	4B-NZ:															Courier (#)			
((Signature)	ure)			lote: Where me													astic	Plastic	Plastic	ber Glass	vial ber Glass		Hand Delivere	, ed	
(1	/ime / Date)				E)	B2													1L Pla	500mL	125mL	200mL Aml	4011L	Ja	Postal	
Nº		Client Sample ID		Date	Matrix																				Sample Comment	s / DG Hazard Warning
1		MB01-1		4/07/2023	soil	X	X													x				x		
2	MB01-2		4/07/2023	soil	X	X													x				x			
3	MB01-3 4		4/07/2023	soil	X	X													x				x			
4		MB01-4 4/07/2023		4/07/2023	soil	X	X													x				x		
5		MB02-2		3/07/2023	soil	X	X													x				x		
6		MB02-3		3/07/2023	soil	X	X													x				x		
7		MB02-4		3/07/2023	soil	X	X													x				x		
8		MB03-1		5/07/2023	soil	X	X													x				x		
9		MB03-2		5/07/2023	soil	X	X													x				x		
10	MB03-3 5		5/07/2023	soil	X	X													x				x			
11	MB03-4		5/07/2023	soil	X	X													x				x			
12																										
		Received By					AUCK	WELL	MELB	1	Da	ate	/_/_	Т	Time	:_	_1	Signature		1					Temperature	
Laboratory Use Or		Received By	Received By				AUCK WELL MELB		Da	ate	//	т	Time			Signature							Report №			

Submission of samples to the laboratory will be deemed as acceptance of Eurofins | mgt Standard Terms and Conditions unless agreed otherwise. A copy of Eurofins | mgt Standard Terms and Conditions is available on request.